Supervised Neural Gas for Classification of Functional Data and Its Application to the Analysis of Clinical Proteom Spectra

  • Frank-Michael Schleif
  • Thomas Villmann
  • Barbara Hammer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4507)


The analysis of functional data, is a common task in bioinformatics. Spectral data as obtained from mass spectrometric measurements in clinical proteomics are such functional data leading to new challenges for an appropriate analysis. Here we focus on the determination of classification models for such data. In general the available approaches for this task initially transform the spectra into a vector space followed by training a classifier. Hereby the functional nature of the data is typically lost, which may lead to suboptimal classifier models. Taking this into account a wavelet encoding is applied onto the spectral data leading to a compact functional representation. Further the Supervised Neural Gas classifier is extended by a functional metric. This allows the classifier to utilize the functional nature of the data in the modeling process. The presented method is applied to clinical proteom data showing good results.


supervised neural gas functional data analysis clinical proteomics wavelet analysis spectra preprocessing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rieder, A., Louis, A.K., Maaß, P.: Wavelets: Theory and Applications. Wiley, Chichester (1998)MATHGoogle Scholar
  2. 2.
    Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45(5), 485–560 (1992)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Hammer, B., Strickert, M., Villmann, T.: Supervised neural gas with general similarity measure. Neural Processing Letters 21(1), 21–44 (2005)CrossRefGoogle Scholar
  4. 4.
    Ketterlinus, R., Hsieh, S.-Y., Teng, S.-H., Lee, H., Pusch, W.: Fishing for biomarkers: analyzing mass spectrometry data with the new clinprotools software. Bio. techniques 38(6), 37–40 (2005)Google Scholar
  5. 5.
    Kohonen, T.: Self-Organizing Maps, 2nd ext. edn. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1997)MATHGoogle Scholar
  6. 6.
    Lee, J., Verleysen, M.: Generalizations of the lp norm for time series and its application to self-organizing maps. In: Cottrell, M. (ed.) 5th Workshop on Self-Organizing Maps, vol. 1, pp. 733–740 (2005)Google Scholar
  7. 7.
    Leung, A., Chau, F., Gao, J.: A review on applications of wavelet transform techniques in chemical analysis: 1989-1997. Chem. and Int. Lab. Sys. 43(1), 165–184 (1998)CrossRefGoogle Scholar
  8. 8.
    Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: ’Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks 4(4), 558–569 (1993)CrossRefGoogle Scholar
  9. 9.
    Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Proceedings of the 1995 Conference, Advances in Neural Information Processing Systems 8, pp. 423–429. MIT Press, Cambridge (1996)Google Scholar
  10. 10.
    Villanueva, J., Philip, J., Entenberg, D., Chaparro, C.A., et al.: Serum peptide profiling by magnetic particle-assisted, automated sample processing and malditof mass spectrometry. Anal. Chem. 76, 1560–1570 (2004)CrossRefGoogle Scholar
  11. 11.
    Villmann, T., Hammer, B.: Supervised neural gas for learning vector quantization. In: Polani, D., Kim, J., Martinetz, T. (eds.) Proc. of the 5th German Workshop on Artificial Life (GWAL-5), pp. 9–16. IOS Press, Berlin (2002)Google Scholar
  12. 12.
    Waagen, D.E., Cassabaum, M.L., Scott, C., Schmitt, H.A.: Exploring alternative wavelet base selection techniques with application to high resolution radar classification. In: Proc. of the 6th Int. Conf. on Inf. Fusion (ISIF’03), pp. 1078–1085. IEEE Press, New York (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Frank-Michael Schleif
    • 1
  • Thomas Villmann
    • 1
  • Barbara Hammer
    • 2
  1. 1.University Leipzig, Dept. of Medicine, 04107 LeipzigGermany
  2. 2.TU-Clausthal, Dept. of Math. & C.S., 38678 Clausthal-ZellerfeldGermany

Personalised recommendations