Advertisement

Some Aspects of a Complexity Theory for Continuous Time Systems

  • Marco Gori
  • Klaus Meer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4497)

Abstract

In this paper we survey previous work by the authors defining a complexity measure for certain continuous time systems. Starting point are energy functions of a particular structure. Global minimizers of such energies correspond to solutions of a given problem, for example an equilibrium point of an ordinary differential equation. The structure of such energies is used to define complexity classes for continuous problems and to obtain completeness results for those classes. We discuss as well algorithmic aspects of minimizing energy functions.

Keywords

Equilibrium Point Energy Function Complexity Theory Complexity Class Complete Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bianchini, M., Gori, M., Scarselli, F.: Inside PageRank. ACM Transactions on Internet Technology 5(1), 92–128 (2005)CrossRefGoogle Scholar
  2. 2.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bournez, O., Campagnolo, M.L.: A Survey on Continuous Time Computations, 2006 (Preprint)Google Scholar
  4. 4.
    Gori, M., Meer, K.: A step towards a complexity theory for analog systems. Mathematical Logic Quarterly 48(1), 45–58 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Minsky, M., Papert, S.: Perceptrons. The MIT Press, Cambridge (1969)zbMATHGoogle Scholar
  6. 6.
    Orponen, P.: A survey of continuous-time computation theory. In: Du, D.-Z., Ko, K.-I. (eds.) Advances in Algorithms, Languages, and Complexity, pp. 209–224. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  7. 7.
    Shynk, J.J.: Performance Surfaces of a Single-Layer Perceptron. IEEE Transactions on Neural Networks 1(3), 268–274 (1990)CrossRefGoogle Scholar
  8. 8.
    Zak, M.: Introduction to terminal dynamics. Complex Systems 7, 59–87 (1993)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Marco Gori
    • 1
  • Klaus Meer
    • 2
  1. 1.Dipartimento di Ingegneria dell’Informazione, Università di Siena, Via Roma 56, I-53100 SienaItaly
  2. 2.Syddansk Universitet Odense, Dept. of Mathematics and Computer Science, Campusvej 55, DK-5230 Odense MDenmark

Personalised recommendations