On Accepting Networks of Splicing Processors of Size 3

  • Remco Loos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4497)

Abstract

In this paper, we show that accepting networks of splicing processors (ANSPs) of size 3 are computationally complete. Moreover, we prove that they can decide all languages in NP in polynomial time. The previous lower bound for both issues was 7. Since, by its definition, ANSPs need at least 2 nodes for any non-trivial computation, we leave only one open case. We also prove the following normal form: For any ANSP there exists an equivalent ANSP without output filters.

Keywords

Molecular Computation Splicing Networks of Processors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J.: Networks of evolutionary processors. Acta Informatica 39, 517–529 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. Castellanos, J., Leupold, P., Mitrana, V.: Descriptional and computational complexity aspects of hybrid networks of evolutionary processors. Theoretical Computer Science 330, 205–220 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. Freund, R., Csuhaj-Varjú, E., Wachtler, F.: Test Tube Systems with Cutting/Recombination Operations. In: Pacific Symposium on BIOCOMPUTING’97, pp. 163–175. World Scientific, Singapore (1997)Google Scholar
  4. Hopcroft, J E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation (1979)Google Scholar
  5. Manea, F., Martin-Vide, C., Mitrana, V.: Accepting networks of splicing processors: Complexity results. Theoretical Computer Science (CiE 2005 special issue) 371(1-2), 72–82 (2007)MathSciNetMATHGoogle Scholar
  6. Manea, F., Martin-Vide, C., Mitrana, V.: All NP-problems can be solved in polynomial time by accepting networks of splicing processors of constant size. In: Mao, C., Yokomori, T. (eds.) DNA Computing. LNCS, vol. 4287, pp. 47–57. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. Margenstern, M., Mitrana, V., Perez-Jimenez, M.: Accepting hybrid networks of evolutionary systems. LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005)MATHGoogle Scholar
  8. Margenstern, M., Rogozhin, Y.: Time-varying distributed H systems of degree 2 generate all recursively enumerable languages. In: Martin-Vide, C., Mitrana, V. (eds.) Where Mathematics, Computer Science and Biology Meet, Kluwer Academic, Dordrecht (2000)Google Scholar
  9. Margenstern, M., Rogozhin, Y., Verlan, S.: Time-varying distributed H systems of degree 2 can carry out parallel computations. In: DNA8. LNCS, vol. 2568, pp. 326–336. Springer, Heidelberg (2003)Google Scholar
  10. Papadimitriou, C.H.: Computational Complexity (1994)Google Scholar
  11. Păun, Gh.: Regular extended H systems are computationally universal. J. Automata, languages, Combinatorics 1(1), 27–36 (1996)MathSciNetMATHGoogle Scholar
  12. Păun, A.: On time-varying H systems. Bulletin of the EATCS 67, 157–164 (1999)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Remco Loos
    • 1
  1. 1.Research Group on Mathematical Linguistics, Rovira i Virgili University, Pça Imperial Tàrraco 1, 43005 TarragonaSpain

Personalised recommendations