Internal Computability

  • Guido Gherardi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4497)

Abstract

We extend the notion of (TTE-)computability to nonstandard universes by the traditional method of enlarging universes through ultrafilters. In this way a nonstandard notion of effectivity is obtained.

Keywords

Computable Analysis Nonstandard Analysis Constructive Mathematics Type-2 Theory of Effectivity Theory of Representations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bishop, E.A., Bridges, B.S.: Constructive Analysis. Springer, Heidelberg (1985)MATHGoogle Scholar
  2. 2.
    Bishop, E.A., Cheng, H.: Constructive measure theory. Mem. American Mathematical Society 116 (1972)Google Scholar
  3. 3.
    Brattka, V.: Effective Borel measurability and reducibility of functions. Mathematical Logic Quarterly 51, 19–44 (2005)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brattka, V., Presser, G.: Computability on subsets of metric spaces. Theoretical Computer Science 305, 43–76 (2003)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bridges, D.S.: Constructive Functional Analysis. Pitman (1979)Google Scholar
  6. 6.
    Chan, Y.K.: A short proof of an existence theorem in constructive measure theory. Proceedings of the American Mathematical Society 48, 435–437 (1975)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Friedman, H.: 6:Undefinability/Nonstandard Models, http://www.cs.nyu.edu/pipermail/fom/1997-November/000278.html
  8. 8.
    Goldblatt, R.: Lectures on the Hyperreals. Springer, Heidelberg (1998)MATHGoogle Scholar
  9. 9.
    Loeb, P.A., Wolff, M. (eds.): Nonstandard Analysis for the Working Mathematician. Kluwer, Dordrecht (2000)Google Scholar
  10. 10.
    Palmgren, E.: Developements in constructive nonstandard analysis. The Bullettin of Symbolic Logic 4, 233–273 (1998)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Robinson, A.: Non-Standard Analysis. North-Holland, Amsterdam (1966)MATHGoogle Scholar
  12. 12.
    Ross, D.A.: The constructive content of nonstandard measure existence proof - is there any? In: Berger, U., Osswald, P., Schuster, P. (eds.) Reunititing the antipodes - Constructive and Nonstandard Views of the Continuum, pp. 229–239. Kluwer Academic Publishers, Boston (2001)Google Scholar
  13. 13.
    Ross, D.A.: A nonstandard proof o a lemma from constructive measure theory. Mathematical Logic Quartely 52, 494–497 (2006)MATHCrossRefGoogle Scholar
  14. 14.
    Tanaka, K.: Nonstandard Analysis in WKL0. Mathematical Logic Quarterly vol. 43 (1997)Google Scholar
  15. 15.
    Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Guido Gherardi
    • 1
  1. 1.Dipartimento di Scienze Matematiche e Informatiche, “R. Magari”, Università di Siena, Pian dei Mantellini 44 - 53100 SienaItaly

Personalised recommendations