Advertisement

Colocatedness and Lebesgue Integrability

  • Douglas S. Bridges
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4497)

Abstract

With reference to Mandelkern’s characterisation of colocated subsets of the line in constructive analysis, we introduce the notion of “strongly colocated set” and find conditions under which such a set is Lebesgue integrable.

Keywords

Positive Integer Open Interval Intuitionistic Logic Countable Union Uniform Continuity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aczel, P., Rathjen, M.: Notes on Constructive Set Theory, Report No. 40, Institut Mittag-Leffler, Royal Swedish Academy of Sciences (2001)Google Scholar
  2. 2.
    Berger, J., Bridges, D.S., Mahalanobis, A.: The anti-Specker property, a Heine–Borel property, and uniform continuity, preprint, University of Canterbury (January 2007)Google Scholar
  3. 3.
    Bishop, E.A.: Foundations of Constructive Analysis, McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  4. 4.
    Bishop, E.A., Bridges, D.S.: Constructive Analysis. Springer, Heidelberg (1985)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bridges, D.S., Vîţă, L.S.: Techniques of Constructive Analysis, Universitext. Springer, New York (2006)zbMATHGoogle Scholar
  6. 6.
    Bridges, D.S., Richman, F.: Varieties of Constructive Mathematics. London Math. Soc. Lecture Notes, vol. 97. Cambridge Univ. Press, Cambridge (1987)CrossRefzbMATHGoogle Scholar
  7. 7.
    Mandelkern, M.: Located sets on the line. Pacific J. Math 95(2), 401–409 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. J. Symb. Logic 14, 145–158 (1949)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Douglas S. Bridges
    • 1
  1. 1.Department of Mathematics & Statistics, University of Canterbury, Private Bag 4800 ChristchurchNew Zealand

Personalised recommendations