Shifting and Lifting of Cellular Automata

  • Luigi Acerbi
  • Alberto Dennunzio
  • Enrico Formenti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4497)


We consider the family of all the Cellular Automata (CA) sharing the same local rule but have different memory. This family contains also all the CA with memory m ≤ 0 (one-sided CA) which can act both on A and on A . We study several set theoretical and topological properties for these classes. In particular we investigate if the properties of a given CA are preserved when we consider the CA obtained by changing the memory of the original one (shifting operation). Furthermore we focus our attention to the one-sided CA acting on A starting from the one-sided CA acting on A and having the same local rule (lifting operation). As a particular consequence of these investigations, we prove that the long-standing conjecture [Surjectivity \(\Rightarrow\) Density of the Periodic Orbits (DPO)] is equivalent to the conjecture [Topological Mixing \(\Rightarrow\) DPO].


discrete time dynamical systems cellular automata topological dynamics deterministic chaos 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blanchard, F.: Dense periodic points in cellular automata,
  2. 2.
    Blanchard, F., Maass, A.: Dynamical behavior of Coven’s aperiodic cellular automata. Theoretical Computer Science 163, 291–302 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blanchard, F., Maass, A.: Dynamical properties of expansive one-sided cellular automata. Israel Journal of Mathematics 99, 149–174 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blanchard, F., Tisseur, P.: Some properties of cellular automata with equicontinuity points. Ann. Inst. Henri Poincaré, Probabilité et Statistiques 36, 569–582 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boyle, M., Fiebig, D., Fiebig, U.: A dimension group for local homeomorphisms and endomorphisms of onesided shifts of finite type. Journal für die Reine und Angewandte Mathematik 487, 27–59 (1997)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Boyle, M., Kitchens, B.: Periodic points for cellular automata. Indag. Math. 10, 483–493 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cattaneo, G., Finelli, M., Margara, L.: Investigating topological chaos by elementary cellular automata dynamics. Theoretical Computer Science 244, 219–241 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Codenotti, B., Margara, L.: Transitive cellular automata are sensitive. American Mathematical Monthly 103, 58–62 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Devaney, R.L.: An introduction to chaotic dynamical systems, 2nd edn. Addison-Wesley, London (1989)zbMATHGoogle Scholar
  10. 10.
    Hedlund, G.A.: Endomorphism and automorphism of the shift dynamical system. Mathematical System Theory 3, 320–375 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergod. Th. & Dynam. Sys. 17, 417–433 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kůrka, P.: Topological symbolic dynamics, Volume 11 of Cours Spécialisés, Société Mathématique de France (2004)Google Scholar
  13. 13.
    Sablik, M.: Directional dynamics for cellular automata. a sensitivity to the initial conditions approach. Preprint (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Luigi Acerbi
    • 1
  • Alberto Dennunzio
    • 1
  • Enrico Formenti
    • 2
  1. 1.Università degli Studi di Milano–Bicocca, Dipartimento di Informatica, Sistemistica e Comunicazione, Via Bicocca degli Arcimboldi 8, 20126 MilanoItaly
  2. 2.Université de Nice-Sophia Antipolis, Laboratoire I3S, 2000 Route des Colles, 06903 Sophia AntipolisFrance

Personalised recommendations