Performance Evaluation of IEEE 802.11 DCF Networks

  • Krzysztof Szczypiorski
  • Józef Lubacz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4516)

Abstract

The paper presents a new analytical saturation throughput model of IEEE 802.11 DCF (Distributed Coordination Function) with basic access in ad-hoc mode. The model takes into account freezing of the backoff timer when a station senses a busy channel. It is shown that taking into account this feature of DCF is important in modeling saturation throughput – yields more accurate results than models known from literature. The proposed analytical model also takes into account the effect of transmission errors.

Keywords

WLAN IEEE 802.11 DCF CSMA/CA modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bianchi, G., Tinnirello, I.: Remarks on IEEE 802.11 DCF Performance Analysis. IEEE Communications Letters 9, 765–767 (2005)CrossRefGoogle Scholar
  2. 2.
    Bianchi, G.: Performance Analysis of the IEEE 802.11 Distributed Coordination Function. IEEE Journal on Selected Areas in Communications 18(3), 535–547 (2000)CrossRefGoogle Scholar
  3. 3.
    Cali, F., Conti, M., Gregori, E.: Dynamic Tuning of the IEEE 802.11 Protocol to Achieve a Theoretical Throughput Limit. IEEE/ACM Trans. Networking 8(6), 785–799 (2000)CrossRefGoogle Scholar
  4. 4.
    Chatzimisios, P., Boucouvalas, A., Vitsas, V.: Influence of Channel BER on IEEE 802.11 DCF. IEE Electronics Letters 39(23) (2003)Google Scholar
  5. 5.
    Ergen, M., Varaiya, P.: Throughput Analysis and Admission Control in IEEE 802.11a. Springer Mobile Networks and Applications 10(5), 705–706 (2005)CrossRefGoogle Scholar
  6. 6.
    Heusse, M., Rousseau, F., Guillier, R., Duda, A.: Idle Sense: An Optimal Access Method for High Throughput and Fairness in Rate Diverse Wireless LANs. In: SIGCOMM’05 Conference on Applications, Technologies, Architectures and Protocols for Computer Communications, Philadelphia, pp. 121–132 (2005)Google Scholar
  7. 7.
    IEEE 802.11, 1999 Edition (ISO/IEC 8802-11: 1999) IEEE Standards for Information Technology – Telecommunications and Information Exchange between Systems – Local and Metropolitan Area Network – Specific Requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (1999)Google Scholar
  8. 8.
    IEEE 802.11a-1999 (8802-11:1999/Amd 1:2000(E)), IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications – Amendment 1: High-speed Physical Layer in the 5 GHz band (1999)Google Scholar
  9. 9.
    IEEE 802.11b-1999 Supplement to 802.11-1999, Wireless LAN MAC and PHY specifications: Higher speed Physical Layer (PHY) extension in the 2.4 GHz band (1999)Google Scholar
  10. 10.
    IEEE 802.11e-2005, IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements (2005)Google Scholar
  11. 11.
    IEEE 802.11g-2003, IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amendment 4: Further Higher-Speed Physical Layer Extension in the 2.4 GHz Band (2003)Google Scholar
  12. 12.
    Kochut, A., Vasan, A., Shankar, A., Agrawala, A.: Sniffing Out the Correct Physical Layer Capture Model in 802. In: 12th IEEE International Conference on Network Protocols (ICNP 2004), Berlin, IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  13. 13.
    Lopez-Aguilera, E., Heusse, M., Rousseau, F., Duda, A., Casademont, J.: Evaluating Wireless LAN Access Methods in Presence of Transmission Errors. In: IEEE INFOCOM, Barcelona, IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  14. 14.
    Ni, Q., Li, T., Turletti, T., Xiao, Y.: Saturation Throughput Analysis of Error-Prone 802.11 Wireless Networks. Wiley Journal of Wireless Communications and Mobile Computing (JWCMC) 5(8), 945–956 (2005)Google Scholar
  15. 15.
    Private communication with Prof. Andrzej DudaGoogle Scholar
  16. 16.
    Tay, Y., Chua, K.: A Capacity Analysis for the IEEE 802.11 MAC Protocol. Wireless Networks 7(2), 159–171 (2001)MATHCrossRefGoogle Scholar
  17. 17.
    The Network Simulator – ns-2, http://nsnam.isi.edu/nsnam/index.php/Main_Page
  18. 18.
    Wu, H., Peng, Y., Long, K., Cheng, S., Ma, J.: Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement. In: IEEE INFOCOM’02 (2002)Google Scholar
  19. 19.
    Ziouva, E., Antonakopoulos, T.: CSMA/CA Performance under High Traffic Conditions: Throughput and Delay Analysis. Computer Communications 25, 313–321 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Krzysztof Szczypiorski
    • 1
  • Józef Lubacz
    • 1
  1. 1.Warsaw University of Technology, Institute of Telecommunications, ul. Nowowiejska 15/19, 00-665 WarsawPoland

Personalised recommendations