Modeling BGP Table Fluctuations

  • Ashley Flavel
  • Matthew Roughan
  • Nigel Bean
  • Olaf Maennel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4516)


In this paper we develop a mathematical model to capture BGP table fluctuations. This provides the necessary foundations to study short- and long-term routing table growth. We reason that this growth is operationally critical for network administrators who need to gauge the amount of memory to install in routers as well as being a potential deciding factor in determining when the Internet community will run out of IPv4 address space.

We demonstrate that a simple model using a simple arrival process with heavy tailed service times is sufficient to reproduce BGP dynamics including the “spiky” characteristics of the original trace data. We derive our model using a classification technique that separates newly added or removed prefixes, short-term spikes and long-term stable prefixes. We develop a model of non-stable prefixes and show it has similar properties in their magnitude and duration to those observed in recorded BGP traces.


Pareto Distribution Border Gateway Protocol Complementary Cumulative Distribution Function Large Spike Forward Information Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rekhter, Y., Li, T.: A Border Gateway Protocol 4, RFC 1771 (1995)Google Scholar
  2. 2.
    Li, J., Bush, R., Mao, Z.M., Griffin, T., Roughan, M., Stutzbach, D., Purpus, E.: Watching Data Streams. Toward a Multi-Homed Sink Under Routing Changes. Introduced by a BGP Beacon. In: PAM (2006)Google Scholar
  3. 3.
    Teixeira, R., Shaikh, A., Griffin, T.G., Rexford, J.: Dynamics of Hot-Potato Routing in IP Networks. In: Proc. ACM SIGMETRICS (2004)Google Scholar
  4. 4.
    Teixeira, R., Shaikh, A., Griffin, T.G., Voelker, G.M.: Network sensitivity to hot-potato disruptions. In: Proc. ACM SIGCOMM (2004)Google Scholar
  5. 5.
    Teixeira, R., Duffield, N.G., Rexford, J., Roughan, M.: Traffic matrix reloaded: Impact of routing changes. In: Proc. PAM (2005)Google Scholar
  6. 6.
    Griffin, T.G., Shepherd, F.B., Wilfong, G.: Policy Disputes in Path Vector Protocols. In: Proc. ICNP (1999)Google Scholar
  7. 7.
    Griffin, T.G., Huston, G.: BGP Wedgies, RFC 4264 (2005)Google Scholar
  8. 8.
    Mao, Z.M., Bush, R., Griffin, T.G., Roughan, M.: BGP Beacons. In: Proc. ACM IMC (2003)Google Scholar
  9. 9.
    Griffin, T.G.: What is the Sound of One Route Flapping? In: IPAM (2002)Google Scholar
  10. 10.
    Griffin, T.G.: Interdomain routing links,
  11. 11.
    Chang, D.F., Govindan, R., Heidemann, J.: An empirical study of router response to large BGP routing table load. In: IMW’02: Proc. 2nd ACM SIGCOMM Workshop on Internet measurment (2002)Google Scholar
  12. 12.
    Agarwal, S., Chuah, C.N., Bhattacharyya, S., Diot, C.: Impact of BGP dynamics on router CPU utilization. In: Proc PAM (2004)Google Scholar
  13. 13.
    Jaeggli, J.: NANOG 39 BOF: Pushing the FIB limits, perspectives on pressures confronting modern routers,
  14. 14.
    Feldmann, A., Kong, H., Maennel, O., Tudor, A.: Measuring BGP Pass-Through Times. In: Proc. PAM (2004)Google Scholar
  15. 15.
    IETF Benchmarking Methodology Working Group (bmwg),
  16. 16.
    Maennel, O., Feldmann, A.: Realistic BGP traffic for test labs. In: Proc. ACM SIGCOMM (2002)Google Scholar
  17. 17.
  18. 18.
    Griffin, T.G., Wilfong, G.: An analysis of BGP convergence properties. In: Proc. ACM SIGCOMM (1999)Google Scholar
  19. 19.
    Labovitz, C.: Scalability of the Internet backbone routing infrastructure. PhD Thesis, University of Michigan (1999)Google Scholar
  20. 20.
    Wetherall, D., Mahajan, R., Anderson, T.: Understanding BGP misconfigurations. In: Proc. ACM SIGCOMM (2002)Google Scholar
  21. 21.
  22. 22.
    Feldmann, A., Maennel, O., Mao, M., Berger, A., Maggs, B.: Locating Internet Routing Instabilities. In: Proc. ACM SIGCOMM (2004)Google Scholar
  23. 23.
    Fuller, V., Li, T., Yu, J., Varadhan, K.: Supernetting: an Address Assignment and Aggregation Strategy, RFC 1338 (1992)Google Scholar
  24. 24.
    Huston, G.: Analyzing the Internet BGP Routing Table. The Internet Protocol Journal 4(1) (2001)Google Scholar
  25. 25.
    University of Oregon RouteViews project,
  26. 26.
  27. 27.
    Zhang, J., Rexford, J., Feigenbaum, J.: Learning-Based Anomaly Detection in BGP Updates. In: Proc. of SIGCOMM Workshops (2005)Google Scholar
  28. 28.
    Andersen, D., Feamster, N., Balakrishnan, H.: Topology Inference from BGP Routing Dynamics. In: 2nd ACM SIGCOMM Internet Measurement Workshop, Boston, MA (2002)Google Scholar
  29. 29.
    Caesar, M., Subramanian, L., Katz, R.H.: Root cause analysis of Internet routing dynamics. Technical report, UCB/CSD-04-1302 (2003)Google Scholar
  30. 30.
    RIPE’s Routing Information Service,
  31. 31.
    Ishiguro, K.: Zebra routing software,
  32. 32.
    Rexford, J., Wang, J., Xiao, Z., Zhang, Y.: BGP routing stability of popular destinations. In: Proc. ACM IMW (2002)Google Scholar
  33. 33.
    Wang, L., Zhao, X., Pei, D., Bush, R., Massey, D., Mankin, A., Wu, S.F., Zhang, L.: Observation and analysis of BGP behavior under stress. In: Proc. ACM IMW (2002)Google Scholar
  34. 34.
    Huston, G.: The BGP Instability Report (2006),

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ashley Flavel
    • 1
  • Matthew Roughan
    • 1
  • Nigel Bean
    • 1
  • Olaf Maennel
    • 1
  1. 1.School of Mathematical Sciences, University of Adelaide 

Personalised recommendations