Domain Ontology Learning and Consistency Checking Based on TSC Approach and Racer

  • Xi Bai
  • Jigui Sun
  • Zehai Li
  • Xianrui Lu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4524)

Abstract

Building domain ontology is time consuming and tedious since it is usually done by domain experts and knowledge engineers manually. This paper proposes a two-stage clustering approach for semi-automatically building ontologies from the Chinese-document corpus ba-sed on SOM neural network and agglomerative hierarchical clustering and automatically checking the ontology consistency. Chinese lexical analysis and XML Path Language(XPath) are used in the process of extracting resources from Web documents. In our experiment, this two-stage clustering approach is used for building an automobile ontology. Experimental results and the comparison with the more conventional ontology-generation method are presented and discussed, indicating the high performance of our approach. A Racer-based consistency-checking method of reasoning is presented in this paper. An ontology evolution method and performance evaluation are also given.

Keywords

Ontology learning consistency checking ontology reasoning hierarchical clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Noy, N.F., McGuinness, D.L.: Ontology development a guide to creating your first ontology, Technical Report KSL-01-05, Stanford Knowledge Systems Laboratory vol.101 (2001)Google Scholar
  2. 2.
    Astrova, I.: Reverse engineering of relational databases to ontologies. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 327–341. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Zhiqing, M., Hongcan, Z., Yihua, Z., Gengui, Z.: A clustering algorithm for Chinese text based on SOM neural network and density. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 251–256. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Bex, G.J., Maneth, S., Neven, F.: A formal model for an expressive fragment of XSLT. Information Systems 28(1), 21–39 (2002)CrossRefGoogle Scholar
  5. 5.
    Bai, X., Sun, J.G., Luo, H.: WDM: A new efficient visualization method of classifying Web documents based on SOM. In: Proceedings of CIS’06, pp. 809–814. IEEE Computer Society Press, Washington (2006)Google Scholar
  6. 6.
    Schneider, K.M.: On word frequency information and negative evidence in Naive Bayes text classification. In: Vicedo, J.L., Martínez-Barco, P., Muńoz, R., Saiz Noeda, M. (eds.) EsTAL 2004. LNCS (LNAI), vol. 3230, pp. 474–485. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Goncalves, A., Jianhan, Z., Dawei, S., Uren, V., Pacheco, R.: LRD: Latent relation discovery for vector space expansion and information retrieval. In: Yu, J.X., Kitsuregawa, M., Leong, H.V. (eds.) WAIM 2006. LNCS, vol. 4016, pp. 122–133. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Dasgupta, S.: Performance guarantees for hierarchical clustering. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 351–363. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Zhang, H.P., Yu, H.K., Xiong, D.Y., Liu, Q.: HHMM-based chinese lexical analyzer ICTCLAS. In: Proceedings of the 2nd SIGHAN Workshop, Sapporo, Japan, pp. 184–187 (July 2003)Google Scholar
  10. 10.
    Panuccio, A., Bicego, M., Murino, V.: A hidden Markov model-based approach to sequential data clustering. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 734–742. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Ward, J.H.: Hierarchical grouping to optimize an objective function. Journoal of the American Statistical Association 58(301), 236–244 (1963)CrossRefGoogle Scholar
  12. 12.
  13. 13.
  14. 14.
    Noy, N., Fergerson, R., Musen, M.: The knowledge model of Protégé-2000: Combining interoperability and flexibility. In: Dieng, R., Corby, O. (eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 17–32. Springer, Heidelberg (2000)Google Scholar
  15. 15.
    Cimiano, P., Staab, S.: Learning by googling. SIGKDD Explorations 6(2), 24–34 (2004)CrossRefGoogle Scholar
  16. 16.
    Agirre, E., Ansa, O., Hovy, E., Martinez, D.: Enriching very large ontologies using the WWW. In: Proceedings of the ECAI’00 Workshop on Ontology Learning, Berlin, Germany (2000)Google Scholar
  17. 17.
    Zurawski, M.: Distributed multi-contextual ontology evolution–a step towards semantic autonomy. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 198–213. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Cimiano, P., Stumme, G., Hotho, A., Tane, J.: Conceptual knowledge processing with formal concept analysis and ontologies. In: Eklund, P.W. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 189–207. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Bandini, S., Calegari, S., Radaelli, P.: Towards fuzzy ontology handling vagueness of natural languages. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 693–700. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Pirrone, R., Cossentino, M., Pilato, G., Rizzo, R., Russo, G.: Discovering learning paths on a domain ontology using natural language interaction. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 310–314. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Xi Bai
    • 1
    • 2
  • Jigui Sun
    • 1
    • 2
  • Zehai Li
    • 1
    • 2
  • Xianrui Lu
    • 3
  1. 1.College of Computer Science and Technology, Jilin University, Changchun 130012China
  2. 2.Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012China
  3. 3.College of Mathematics, Jilin University, Changchun 130012China

Personalised recommendations