Comparison of Simulated Annealing, Interval Partitioning and Hybrid Algorithms in Constrained Global Optimization

  • Chandra Sekhar Pedamallu
  • Linet Özdamar
Part of the Natural Computing Series book series (NCS)


The continuous Constrained Optimization Problem (COP) often occurs in industrial applications. In this study, we compare three novel algorithms developed for solving the COP.The first approach consists of an Interval Partitioning Algorithm (IPA) that is exhaustive in covering the whole feasible space. IPA has the capability of discarding sub-spaces that are sub-optimal and/or infeasible, similar to available Branch and Bound techniques. The difference of IPA lies in its use of Interval Arithmetic rather than conventional bounding techniques described in the literature. The second approach tested here is the novel dual-sequence Simulated Annealing (SA) algorithm that eliminates the use of penalties for constraint handling. Here, we also introduce a hybrid algorithm that integrates SA in IPA (IPA-SA) and compare its performance with stand-alone SA and IPA algorithms. All three methods have a local COP solver, Feasible Sequential Quadratic Programming (FSQP) incorporated so as to identify feasible stationary points. The performances of these three methods are tested on a suite of COP benchmarks and the results are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Khayyal F A, Sherali H D (2000) SIAM Journal on Optimization, 10:1049–1057MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bennage W A, Dhingra A K (1995) International Journal of Numerical Methods in Engineering, 38:2753–2773MATHCrossRefGoogle Scholar
  3. 3.
    Carlson S, Shonkwiler R, Babar S, Aral M (1998) Annealing a genetic algorithm over constraints. SMC 98 Conference, available from Scholar
  4. 4.
    Coconut Test Problems on Constrained Optimization Problems – Library2.∼neum/glopt/coconut/Google Scholar
  5. 5.
    Csendes T, Ratz D (1997) SIAM Journal of Numerical Analysis 34:922–938MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dallwig S, Neumaier A, Schichl H (1997) GLOPT – A Program for Constrained Global Optimization. In: Bomze I M, Csendes T, Horst R, Pardalos P M (eds) Developments in Global Optimization. Kluwer, DordrechtGoogle Scholar
  7. 7.
    Dembo R S (1976) Mathematical Programming 10:192–213MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dekkers A, Aarts E (1991) Mathematical Programming 50:367–393MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Drud A S (1996) CONOPT: A System for Large Scale Nonlinear Optimization. Reference Manual for CONOPT Subroutine Library, ARKI Consulting and Development A/S, Bagsvaerd DenmarkGoogle Scholar
  10. 10.
    Epperly T G (1995) Global optimization of nonconvex nonlinear programs using parallel branch and bound. Ph. D dissertation, University of Wisconsin-Madison, MadisonGoogle Scholar
  11. 11.
    Floudas C A, Pardalos P M (1990) A collection of Test Problems for Constrained Global Optimization Algorithms. Volume 455 of Lecture Notes in Computer Science. Springer-Verlag, Berlin Heidelberg New YorkMATHGoogle Scholar
  12. 12.
    Forsgren A, Gill P E, Wright M H (2002) SIAM Review 44:525–597MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gill P E, Murray W, Saunders M A (1997) SNOPT: An SQP algorithm for large-scale constrained optimization. Numerical Analysis Report 97-2, Department of Mathematics, University of California, San Diego, La Jolla, CAGoogle Scholar
  14. 14.
    Hansen P, Jaumard B, Lu S-H (1991) Mathematical Programming 52:227–254MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hansen E R(1992) Global Optimization Using Interval Analysis. Marcel Dekker, New YorkGoogle Scholar
  16. 16.
    Hansen E, Sengupta S (1980) Global constrained optimization using interval analysis. In: Nickel K L (eds), Interval MathematicsGoogle Scholar
  17. 17.
    Hedar A-R, Fukushima M (2006) Derivative-free filter simulated annealing method for constrained continuous global optimization. Journal of Global Optimization (to appear)Google Scholar
  18. 18.
    Joines J, Houck C (1994) On the use of non-stationary penalty functions to solve non-linear constrained optimization problems with GAs. Proceedings of the First IEEE International Conference on Evolutionary Computation, IEEE Press. 579–584Google Scholar
  19. 19.
    Kearfott R B (1996a) Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht, NetherlandsMATHGoogle Scholar
  20. 20.
    Kearfott R B (1996b) A Review of Techniques in the Verified Solution of Constrained Global Optimization Problems. In: Kearfott R B, Kreinovich V (eds) Applications of Interval Computations. Kluwer, Dordrecht, NetherlandsGoogle Scholar
  21. 21.
    Kearfott R B(2003) An overview of the GlobSol Package for Verified Global Optimization. Talk given for the Department of Computing and Software, McMaster University, CannadaGoogle Scholar
  22. 22.
    Kirkpatrick A, Gelatt Jr C D, Vechi M P (1983) Science 220:671–680CrossRefMathSciNetGoogle Scholar
  23. 23.
    Korf R E (1985) Artificial Intelligence 27:97–109MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lawrence C T, Zhou J L, Tits A L (1997) User’s Guide for CFSQP version 2.5: A Code for Solving (Large Scale) Constrained Nonlinear (minimax) Optimization Problems, Generating Iterates Satisfying All Inequality Constraints. Institute for Systems Research, University of Maryland, College Park, MDGoogle Scholar
  25. 25.
    Leite J P B, Topping B H V (1999) Computers and Structures 73:545–564MATHCrossRefGoogle Scholar
  26. 26.
    Markot M C (2003) Reliable Global Optimization Methods for Constrained Problems and Their Application for Solving Circle Packing Problems. PhD dissertation, University of Szeged, HungaryGoogle Scholar
  27. 27.
    Markot M C, Fernandez J, Casado L G, Csendes T (2006) New interval methods for constrained global optimization. Mathematical Programming 106:287–318MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Michalewicz Z, Attia N (1994) Evolutionary optimization of constrained problems. Proceedings of the Third Annual Conference on Evolutionary Programming, World ScientificGoogle Scholar
  29. 29.
    Michalewicz Z (1995) Genetic algorithms, numerical optimization, and constraints. Proceedings of the Sixth International Conference on Genetic Algorithms, Morgan KaufmannGoogle Scholar
  30. 30.
    Morales K A, Quezada C C (1998) A universal eclectic genetic algorithm for constrained optimization. Proceedings 6th European Congress on Intelligent Techniques and Soft Computing, EUFIT’98Google Scholar
  31. 31.
    Murtagh B A, Saunders M A (1987) MINOS 5.0 User’s Guide. Report SOL 83-20, Department of Operations Research, Stanford University, USAGoogle Scholar
  32. 32.
    Myung H, Kim J-H, Fogel D B (1995) Evolutionary Programming 449–463Google Scholar
  33. 33.
    Özdamar L, Demirhan M (2000) Computers and Operations Research, 27:841–865MATHCrossRefGoogle Scholar
  34. 34.
    Pardalos P M, Romeijn H E (2002) Handbook of Global Optimization Volume 2. Springer, Boston Dordrecht LondonGoogle Scholar
  35. 35.
    Pedamallu C S, Özdamar L (2006) Investigating a hybrid simulated annealing and local search algorithm for constrained optimization. Inpress EJOR ( Scholar
  36. 36.
    Pedamallu C S, Özdamar L, Csendes T (2006) An interval partitioning approach for continuous constrained optimization. Accepted for publication in Models and Algorithms in Global Optimization. Springer, Berlin Heidelberg New YorkGoogle Scholar
  37. 37.
    Pinter J D (1997) LGO – A program system for continuous and Lipschitz global optimization. In: Bomze I M, Csendes T, Horst R, Pardalos P M (eds) Developments in Global Optimization. Kluwer Academic Publishers, Dordrecht Boston LondonGoogle Scholar
  38. 38.
    Ratschek H, Rokne J (1988) New Computer Methods for Global Optimization. Ellis Horwood, ChichesterMATHGoogle Scholar
  39. 39.
    Sahinidis N V (2003) Global Optimization and Constraint Satisfaction: The Branch-and-Reduce Approach. In: Bliek C, Jermann C, Neumaier A (eds) COCOS 2002, LNCS. Springer, Boston Dordrecht LondonGoogle Scholar
  40. 40.
    Schoenauer M, Michalewicz Z (1999) Evolutionary Computation 7:19–44Google Scholar
  41. 41.
    Smith E M B, Pantelides C. C (1999) Computers and Chemical Engineering 23:457–478CrossRefGoogle Scholar
  42. 42.
    Swaney R E (1990) Global Solution of algebraic nonlinear programs. AIChE Annual Meeting, Chicago, ILGoogle Scholar
  43. 43.
    Visweswaran V, Floudas C A (1990) Computers and Chemical Engineering 14:1419–1434CrossRefGoogle Scholar
  44. 44.
    Wah B W, Wang T (2000) International Journal on Artificial Intelligence Tools 9:3–25CrossRefGoogle Scholar
  45. 45.
    Wah B W, Chen Y X (2000) Optimal anytime constrained simulated annealing for constrained global optimization. In: Dechter R (ed.) LNCS 1894. Springer, Berlin Heidelberg New YorkGoogle Scholar
  46. 46.
    Wolfe M A (1994) Journal of Computational and Applied Mathematics 50:605–612MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Wong K P, Fung C C (1993) IEE Proceedings: Part C 140:509–515Google Scholar
  48. 48.
    Wong K P, Wong Y W (1995) IEE Proceedings: Generation Transmission and Distribution 142:372–380CrossRefGoogle Scholar
  49. 49.
    Wong K P, Wong Y W (1996) IEEE Transactions on Power Systems 11:112–118CrossRefGoogle Scholar
  50. 50.
    Wong K P, Wong Y W (1997) IEEE Transactions on Power Systems 12:776–784CrossRefGoogle Scholar
  51. 51.
    Wong Y C, Leung K S, Wong C K (2000) IEEE Transactions on Systems, Man, and Cybernetics, Part C 30: 506–516CrossRefGoogle Scholar
  52. 52.
    Zhou J L, Tits A L (1996) SIAM Journal on Optimization 6:461–487MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Chandra Sekhar Pedamallu
    • 1
  • Linet Özdamar
    • 2
  1. 1.Institute of InformaticsUniversity of SzegedSzegedHungary
  2. 2.Izmir University of EconomicsBalcovaTurkey

Personalised recommendations