Advertisement

Abstract

In this paper we introduce a formal model for reasoning about resource sensitive timed component connectors. We extended the constraint automata model, which is used as the semantic model for the exogenous channel-based coordination language Reo, through integrating both resource and time information. This model allows to specify both the interactions that take time to be performed and timeouts. Moreover, the model reflects resource issues, such as bandwidth or allocated memory, that may affect the time needed for interactions when specifying the timed behavior of connectors. The time duration that an interaction takes is represented by a function on the available resources. In addition to the formalism, we also discuss compositional reasoning and present two notions of simulation to relate different connectors from functional and resource-sensitive temporal perspectives respectively.

Keywords

Coordination Constraint Automata Resource-Sensitive Timed Constraint Automata Simulation 

References

  1. 1.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and Temporal Logics for Timed Component Connectors. In: Cuellar, J.R., Liu, Z. (eds.) SEFM2004. 2nd International Conference on Software Engineering and Formal Methods, pp. 198–207. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  3. 3.
    Arbab, F.: Reo: A Channel-based Coordination Model for Component Composition. Mathematical Structures in Computer Science 14(3), 329–366 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arbab, F., Baier, C., Rutten, J., Sirjani, M.: Modeling component connectors in reo by constraint automata (extended abstract). In: Brogi, A., Jacquet, J.-M., Pimentel, E. (eds.) Proceedings of FOCLASA 2003. Foundations of Coordination Languages and Software Architectures. ENTCS, vol. 97, pp. 25–46. Elsevier, Amsterdam (2003)Google Scholar
  5. 5.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by constraint automata. Science of Computer Programming 61, 75–113 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Baier, C., Wolf, V.: Stochastic Reasoning About Channel-Based Component Connectors. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 1–15. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 108–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Diaz, G., Pardo, J.-J., Cambronero, M.-E., Valero, V., Cuartero, F.: Automatic Translation of WS-CDL Choreographies to Timed Automata. In: Bravetti, M., Kloul, L., Zavattaro, G. (eds.) Formal Techniques for Computer Systems and Business Processes. LNCS, vol. 3670, pp. 230–242. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Jin, N., He, J.: Resource Semantic Models for Programming Languages. Technical Report 277, UNU/IIST (April 2003)Google Scholar
  10. 10.
    Lowe, G.: Scheduling-oriented models for real-time systems. The Computer Journal 38, 443–456 (1995)CrossRefGoogle Scholar
  11. 11.
    Papazoglou, M.P., Georgakopoulos, D.: Service Oriented Computing. Comm. ACM 46(10), 25–28 (2003)Google Scholar
  12. 12.
    Menascé, D.A.: Composing Web Services: A QoS View. IEEE Internet Computing 8(6), 88–90 (2004)CrossRefGoogle Scholar
  13. 13.
    Merayo, M.G., Núñez, M., Rodríguez, I.: Extending efsms to specify and test timed systems with action durations and timeouts. In: Najm, E., Pradat-Peyre, J.F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 372–387. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Milner, R.: An algebraic definition of simulation between programs. In: Cooper, D.C. (ed.) Proceedings of the 2nd International Joint Conference on Artifiial Intelligence, London, British Computer Society, William Kaufmann (1971)Google Scholar
  15. 15.
    Mousavi, M.R., Reniers, M.A., Basten, T., Chaudron, M.R.V.: PARS: A Process Algebra with Resources and Schedulers. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 134–150. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Núñez, M., Rodríguez, I.: Conformance testing relations for timed systems. In: Grieskamp, W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 103–117. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Park, J.C., Miller, R.E.: Synthesizing protocol specifications from service specifications in timed extended finite state machines. In: Park, J.C., Miller, R.E. (eds.) ICDCS’97. 17th IEEE International Conference on Distributed Computing Systems, pp. 253–260. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  18. 18.
    Parrow, J.: Fairness Properties in Process Algebra. PhD thesis, Uppsala University, Sweden (1985)Google Scholar
  19. 19.
    Pym, D., Tofts, C.: A calculus and logic of resources and processes. Formal Aspects of Computing 18, 495–517 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2007

Authors and Affiliations

  • Sun Meng
    • 1
  • Farhad Arbab
    • 1
  1. 1.CWI, Kruislaan 413, AmsterdamThe Netherlands

Personalised recommendations