Advertisement

A New Self-stabilizing Maximal Matching Algorithm

  • Fredrik Manne
  • Morten Mjelde
  • Laurence Pilard
  • Sébastien Tixeuil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4474)

Abstract

The maximal matching problem has received considerable attention in the self-stabilizing community. Previous work has given different self-stabilizing algorithms that solves the problem for both the adversarial and fair distributed daemon, the sequential adversarial daemon, as well as the synchronous daemon. In the following we present a single self-stabilizing algorithm for this problem that unites all of these algorithms in that it stabilizes in the same number of moves as the previous best algorithms for the sequential adversarial, the distributed fair, and the synchronous daemon. In addition, the algorithm improves the previous best moves complexities for the distributed adversarial daemon from O(n 2) and O(δm) to O(m) where n is the number of processes, m is the number of edges, and δ is the maximum degree in the graph.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blair, J., Manne, F.: Efficient self-stabilzing algorithms for tree networks. In: ICDS, pp. 20–26. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  2. 2.
    Chattopadhyay, S., Higham, L., Seyffarth, K.: Dynamic and self-stabilizing distributed matching. In: PODC, pp. 290–297 (2002)Google Scholar
  3. 3.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)zbMATHCrossRefGoogle Scholar
  4. 4.
    Dolev, S.: Self Stabilization. MIT Press, Cambridge (March 2000)zbMATHGoogle Scholar
  5. 5.
    Goddard, W., et al.: Self-stabilizing protocols for maximal matching and maximal independent sets for ad hoc networks. In: IPDPS, p. 162. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  6. 6.
    Goddard, W., Hedetniemi, S.T., Shi, Z.: An anonymous self-stabilizing algorithm for 1-maximal matching in trees. In: Arabnia, H.R. (ed.) PDPTA, pp. 797–803. CSREA Press (2006)Google Scholar
  7. 7.
    Gradinariu, M., Johnen, C.: Self-stabilizing neighborhood unique naming under unfair scheduler. In: Sakellariou, R., et al. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 458–465. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Gradinariu, M., Tixeuil, S.: Conflict managers for self-stabilization without fairness assumption. Technical Report 1459, LRI, Université Paris Sud (September 2006)Google Scholar
  9. 9.
    Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time o(m). Inf. Process. Lett. 80(5), 221–223 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hsu, S.-C., Huang, S.-T.: A self-stabilizing algorithm for maximal matching. Inf. Process. Lett. 43(2), 77–81 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Karaata, M.H., Saleh, K.A.: Distributed self-stabilizing algorithm for finding maximum matching. Comput. Syst. Sci Eng. 15(3), 175–180 (2000)Google Scholar
  12. 12.
    Tel, G.: Maximal matching stabilizes in quadratic time. Inf. Process. Lett 49(6), 271–272 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Fredrik Manne
    • 1
  • Morten Mjelde
    • 1
  • Laurence Pilard
    • 2
  • Sébastien Tixeuil
    • 3
  1. 1.University of BergenNorway
  2. 2.University of IowaUSA
  3. 3.LRI-CNRS UMR 8623 & INRIA Grand Large, Université Paris SudFrance

Personalised recommendations