Advertisement

A Cultural Algorithm with Operator Parameters Control for Solving Timetabling Problems

  • Carlos Soza
  • Ricardo Landa
  • María Cristina Riff
  • Carlos Coello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4529)

Abstract

A cultural algorithm, together with a set of new operators for the timetabling problem(TP), is proposed in this paper. The new operators extract information about the problem during the evolutionary process, and they are combined with some previously proposed operators, in order to improve the performance of the algorithm. The proposed algorithm is tested with a benchmark of 20 instances, and compared with respect to three other algorithms: two evolutionary algorithms and a simulated annealing algorithm which won an international competition on TP.

Keywords

Evolutionary Algorithm Memetic Algorithm Soft Constraint Hard Constraint Timetabling Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chung, C.-J., Reynolds, R.G.: CAEP: An Evolution-based Tool for Real-Valued Function Optimization using Cultural Algorithms. Journal on Artificial Intelligence Tools 7(3), 239–292 (1998)CrossRefGoogle Scholar
  2. 2.
    Coello, C.A., Landa, R.: Adding knowledge and efficient data structures to evolutionary programming: A cultural algorithm for constrained optimization. In: Proceedings GECCO, pp. 201–209. MK Publishers (2002)Google Scholar
  3. 3.
    Cordeau, J.F., Jaumard, B., Morales, R.: Efficient timetabling solution with tabu search. International Timetabling Competition (2003)Google Scholar
  4. 4.
    Durham, W.H.: Co-evolution: Genes, Culture, and Human Diversity. Stanford University Press, Stanford (1994)Google Scholar
  5. 5.
    Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter Control in Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (2000)CrossRefGoogle Scholar
  6. 6.
    Franklin, B., Bergerman, M.: Cultural algorithms: Concepts and experiments. In: Proceedings of the 2000 Congress on Evolutionary Computation, pp. 1245–1251. IEEE Service Center, Piscataway (2000)CrossRefGoogle Scholar
  7. 7.
    Algorithmic Solutions Software GmbH. Leda 5.1 (2006), http://www.algorithmic-solutions.com
  8. 8.
    Kostuch, P.: Timetabling competition - sa-based heuristic. International Timetabling Competition (2003)Google Scholar
  9. 9.
    Lewis, R., Paechter, B.: New crossover operators for timetabling with evolutionary algorithms. In: 5th International Conference on Recent Advances in Soft Computing (RASC 2004), pp. 189–195 (2004)Google Scholar
  10. 10.
    Metaheuristics Network. International timetabling competition (2003), http://www.idsia.ch/Files/ttcomp2002/ Last access: December 2006
  11. 11.
    Reynolds, R.G.: An Introduction to Cultural Algorithms. In: Sebald, A.V., Fogel, L.J. (eds.) Proceedings of the Third Annual Conference on Evolutionary Programming, pp. 131–139. World Scientific, River Edge (1994)Google Scholar
  12. 12.
    Richerson, P.J., Boyd, R.: Not By Genes Alone: How Culture Transformed Human Evolution. University Of Chicago Press, Chicago (Dec. 2004)Google Scholar
  13. 13.
    Rossi-Doria, O., Paechter, B.: A memetic algorithm for university course timetabling. In: Proceedings of Combinatorial Optimisation (CO’2004), School of Computing, Napier University, Scotland (2004)Google Scholar
  14. 14.
    Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Physica-Verlag, New York (2002)MATHGoogle Scholar
  15. 15.
    Socha, K., Sampels, M., Manfrin, M.: Ant algorithms for the university course timetabling problem with regard to the state-of-the-art. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 334–345. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Soza, C., Riff, M.C., Landa, R.: Towards a cultural algorithm to solve timetabling problems. In: The Fifth ALIO/EURO conference, Paris (October 2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Carlos Soza
    • 1
  • Ricardo Landa
    • 2
  • María Cristina Riff
    • 1
  • Carlos Coello
    • 2
  1. 1.Universidad Federico Santa María, Departamento de Informática, Av. España No. 1680, ValparaísoChile
  2. 2.CINVESTAV-IPN (Evolutionary Computation Group), Departamento de Ingeniería Eléctrica, Sección de Computación, Av. IPN No. 2508 Col. San Pedro Zacatenco, México D.F. 07300Mexico

Personalised recommendations