Advertisement

Collaboration Between Hyperheuristics to Solve Strip-Packing Problems

  • Pablo Garrido
  • María Cristina Riff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4529)

Abstract

In this paper we introduce a collaboration framework for hyperheuristics to solve hard strip packing problems. We have designed a genetic based hyperheuristic to cooperate with a hill-climbing based hyperheuristic. Both of them use the most recently proposed low-level heuristics in the literature. REVAC, which has recently been proposed for tuning [18], has been used to find the best operators parameter values. The results obtained are very encouraging and have improved the results from both the single heuristics and the single hyperheuristics’ tests. Thus, we conclude that the collaboration among hyperheuristics is a good way to solve hard strip packing problems.

Keywords

Hyperheuristic Strip Packing Heuristic Search Metaheuristics Parameter Control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez-Valdes, R., Parreño, F., Tamarit, J.M.: Reactive grasp for the strip packing problem. In: Proceedings Metaheuristic Conference MIC, vol. 1 (2005)Google Scholar
  2. 2.
    Araya, I., Riff, M.-C., Neveu, B.: Towards an efficient hyperheuristic for strip-packing problems. In: Proceedings of the 7th EU-Meeting, Málaga, Spain (2006)Google Scholar
  3. 3.
    Baker, B.S., Coffman, E.G., Rivest, R.L.: Orthogonal packings in two dimensions. SIAM Journal on Computing 9, 846–855 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bortfeldt, A.: A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces. European Journal of Operational Research 172, 814–837 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bortfeldt, A., Gehring, H.: New large benchmarks for the two-dimensional strip packing problem with rectangular pieces. In: IEEE Proceedings of the 39th Hawaii International Conference on Systems Sciences, p. 30.2 (2006)Google Scholar
  6. 6.
    Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: an emerging direction in modern search technology. In: Handbook of Metaheuristics, vol. 16, pp. 457–474 (2003)Google Scholar
  7. 7.
    Cowling, P., Kendall, G., Han, L.: An adaptive length chromosome hyperheuristic genetic algorithm for a trainer scheduling problem. In: Proceedings SEAL (2002)Google Scholar
  8. 8.
    Cowling, P., Kendall, G., Han, L.: An investigation of a hyperheuristic genetic algorithm applied to a trainer scheduling problem. In: Proceedings CEC (2002)Google Scholar
  9. 9.
    Han, L., Kendall, G.: Guided operators for a hyper-heuristic genetic algorithm. In: Proceedings of AI-2003: Advances in Artificial Intelligence. The 16th Australian Conference on Artificial Intelligence, pp. 807–820 (2003)Google Scholar
  10. 10.
    Hopper, E.: Two-Dimensional Packing Utilising Evolutionary Algorithms and other Meta-Heuristic Methods. PhD. Thesis Cardiff University (2000)Google Scholar
  11. 11.
    Hopper, E., Turton, B.C.H.: An empirical investigation on metaheuristic and heuristic algorithms for a 2d packing problem. European Journal of Operational Research 128, 34–57 (2001)zbMATHCrossRefGoogle Scholar
  12. 12.
    Iori, M., Martello, S., Monaci, M.: Metaheuristic algorithms for the strip packing problem, pp. 159–179. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  13. 13.
    Lesh, N., Marks, J., McMahon, A., Mitzenmacher, M.: Exhaustive approaches to 2d rectangular perfect packings. Information Processing Letters 90, 7–14 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Lesh, N., Marks, J., McMahon, A., Mitzenmacher, M.: New heuristic and interactive approaches to 2d rectangular strip packing. ACM Journal of Experimental Algorithmics 10, 1–18 (2005)MathSciNetGoogle Scholar
  15. 15.
    Lesh, N., Mitzenmacher, M.: Bubble search: A simple heuristic for improving priority-based greedy algorithms. Information Processing Letters 97, 161–169 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Martello, S., Monaci, M., Vigo, D.: An exact approach to the strip-packing problem. INFORMS Journal of Computing 15, 310–319 (2003)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Mumford-Valenzuela, C., Vick, J., Wang, P.Y.: Heuristics for large strip packing problems with guillotine patterns: An empirical study. In: Metaheuristics: computer decision-making. Applied Optimization, vol. 86, pp. 501–522. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  18. 18.
    Nannen, V., Eiben, A.E.: Relevance estimation and value calibration of evolutionary algorithm parameters. In: Proceedings of Joint International Conference for Artificial Intelligence, IJCAI (2006)Google Scholar
  19. 19.
    Soke, A., Bingul, Z.: Hybrid genetic algorithm and simulated annealing for two-dimensional non-guillotine rectangular packing problems. Engineering Applications of Artificial Intelligence 19, 557–567 (2006)CrossRefGoogle Scholar
  20. 20.
    Zhang, D., Kang, Y., Deng, A.: A new heuristic recursive algorithm for the strip rectangular packing problem. Computers and Operations Research 33, 2209–2217 (2006)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Pablo Garrido
    • 1
  • María Cristina Riff
    • 1
  1. 1.Universidad Federico Santa María, Departamento de Informática, Av. España No. 1680, ValparaísoChile

Personalised recommendations