Semi–Boolean and Hyper–Archimedean BL–Algebras

  • Esko Turunen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4529)


We analyze differences between BL–algebras and MV–algebras. The study has application in mathematical fuzzy logic as the Lindenbaum algebras of Lukasiewicz logic or Hájek’s BL–logics are MV–algebras or BL–algebras, respectively. We focus on possible generalizations of Boolean elements of a general BL–algebra L; we prove that an element x ∈ L is Boolean iff x ∨ x  ∗  = 1. L is called semi–Boolean if, for all x ∈ L, x  ∗  is Boolean. We prove that an MV–algebra L is semi–Boolean iff L is a Boolean algebra. A BL–algebra L is semi–Boolean iff L is a SBL–algebra. A BL–algebra L is called hyper–Archimedean if, for all x ∈ L, there is an n ≥ 1 such that x n is Boolean. We prove that hyper–Archimedean BL–algebras are MV–algebras. We discuss briefly the applications of our results in mathematical fuzzy logic.


Mathematical fuzzy logic BL–algrebra MV–algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cavaccini, V., Lettieri, A.: Some results on hyper–Archimedean MV–algebras. In: Barlotti, A., et al. (eds.) Combinatorics ’90, pp. 71–79. Elsevier, Amsterdam (1992)Google Scholar
  2. 2.
    Di Nola, A., Georgescu, G., Leustean, L.: Boolean Products of BL–algebras. Jour. Math. Anal. Appl. 251, 106–131 (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Di Nola, A., Sessa, S., Esteva, F., Godo, L., Garcia, P.: The variety generated by perfect BL–algebras: an algebraic approach in a fuzzy logic setting. Ann. Math. Artif. Int. 35, 197–214 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)zbMATHGoogle Scholar
  5. 5.
    Mertanen, J., Turunen, E.: Problematic extension of states on BL–algebras (submitted)Google Scholar
  6. 6.
    Turunen, E.: Mathematics behind Fuzzy Logic. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  7. 7.
    Turunen, E.: BL–algebras of Basic Fuzzy Logic. Mathware and Soft Computing 6, 49–61 (1999)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Turunen, E.: Boolean deductive systems of BL–algebras. Archive for Mathematical Logic 40, 467–473 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Turunen, E., Sessa, S.: Local BL–algebras. Multiple Valued Logic 6(1–2), 229–249 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Turunen, E.: Semilocal BL–algeras. In: IX International IFSA Congress 2005, Beiing, China, 28–31 July 2005, pp. 252–256 (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Esko Turunen
    • 1
  1. 1.Tampere University of Technology, P.O. Box 553, 33101 TampereFinland

Personalised recommendations