A Risk-Minimizing Model Under Uncertainty in Portfolio

  • Yuji Yoshida
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4529)


A risk-minimizing portfolio model under uncertainty is discussed. In the uncertainty model, the randomness and fuzziness are evaluated respectively by the probabilistic expectation and mean values with evaluation weights and λ-mean functions. The means, variances and the measurements of fuzziness for fuzzy numbers/fuzzy random variables are applied in the possibility case and the necessity case, and a risk estimation is derived from both random factors and fuzzy factors in the model. By quadratic programming approach, we derive a solution of the risk-minimizing portfolio problem. It is shown that the solution is a tangency portfolio. A numerical example is given to illustrate our idea.


Fuzzy Number Trading Strategy Portfolio Selection Sharpe Ratio Evaluation Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Campos, L., Munoz, A.: A subjective approach for ranking fuzzy numbers. Fuzzy Sets and Systems 29, 145–153 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Carlsson, C., Fullér, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets and Systems 122, 315–326 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Feng, Y., Hu, L., Su, H.: The variance and covariance of fuzzy random variables. Fuzzy Sets and Systems 120, 487–497 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Fortemps, P., Roubens, M.: Ranking and defuzzification methods based on area compensation. Fuzzy Sets and Systems 82, 319–330 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Goetshel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets and Systems 18, 31–43 (1986)CrossRefMathSciNetGoogle Scholar
  6. 6.
    López-Díaz, M., Gil, M.A.: The λ-average value and the fuzzy expectation of a fuzzy random variable. Fuzzy Sets and Systems 99, 347–352 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Inuiguchi, M., Tanino, T.: Portfolio selection under independent possibilistic information. Fuzzy Sets and Systems 115, 83–92 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Kwakernaak, H.: Fuzzy random variables – I. Definitions and theorem. Inform. Sci. 15, 1–29 (1978)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Markowits, H.: Mean-Variance Analysis in Portfolio Choice and Capital Markets. Blackwell Publ., Oxford (1990)Google Scholar
  10. 10.
    Pliska, S.R.: Introduction to Mathematical Finance: Discrete-Time Models. Blackwell Publ., New York (1997)Google Scholar
  11. 11.
    Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114, 409–422 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Steinbach, M.C.: Markowitz revisited: Mean-variance model in financial portfolio analysis. SIAM Review 43, 31–85 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Tanaka, H., Guo, P., Türksen, L.B.: Portfolio selection based on fuzzy probabilities and possibilistic distribution. Fuzzy Sets and Systems 111, 397–397 (2000)CrossRefGoogle Scholar
  14. 14.
    Yager, R.R.: A procedure for ordering fuzzy subsets of the unit interval. Information Sciences 24, 143–161 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Yoshida, Y., Yasuda, M., Nakagami, J., Kurano, M.: A discrete-time portfolio selection with uncertainty of stock prices. In: De Baets, B., Kaynak, O., Bilgiç, T. (eds.) IFSA 2003. LNCS, vol. 2715, pp. 245–252. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Yoshida, Y.: A mean estimation of fuzzy numbers by evaluation measures. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3214, pp. 1222–1229. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Yoshida, Y.: Mean values, measurement of fuzziness and variance of fuzzy random variables for fuzzy optimization. In: Proceedings of SCIS & ISIS 2006, pp. 2277–2282 (2006)Google Scholar
  18. 18.
    Zadeh, L.A.: Fuzzy sets. Inform. and Control 8, 338–353 (1965)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Yuji Yoshida
    • 1
  1. 1.Faculty of Economics and Business Administration, University of Kitakyushu, 4-2-1 Kitagata, Kokuraminami, Kitakyushu 802-8577Japan

Personalised recommendations