Fuzzy Model Based Iterative Learning Control for Phenol Biodegradation

  • Marco Mürquez
  • Julio Waissman
  • Olivia Gutü
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4529)


In a fedbatch process the operational strategy can consist on controling the influent substrate concentration in the reactor, by means of the input flow manipulation. Due to the repetitive characteristic of the Sequencing Batch Reactor processes, it opens the possibility to explore the information generated in previous cycles to improve the process operation, without having on-line sensors and/or a very precise analytical model. In this work an iterative learning control strategy based on a fuzzy model is proposed. It is assumed that the measurements are analytical and only a few number of them can be obtained. So, an interpolation technique is used to improve the control performance. Simulation results for a phenol biodegradation process are presented.


Fuzzy Iterative Learning Control Biotechnological Process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bastin, G., Dochain, D.: On-line estimation and adaptive control of bioreactors. Elsevier, Amsterdam (1990)Google Scholar
  2. 2.
    Van Impe, J., Bastin, G.: Optimal adaptive control of fed-batch fermentation processes. Cont. Eng. Prac. 3, 939–954 (1995)CrossRefGoogle Scholar
  3. 3.
    Bien, Z., Xu, J.: Iterative learning control analysis, design, integration and applications. Kluwer Academic Publishers, Boston (1998)Google Scholar
  4. 4.
    Arimoto, S., Kawamura, S., Miyazaki, S.: Bettering operation of robots by learning. J. Robotics Systems 1(2), 123–140 (1984)CrossRefGoogle Scholar
  5. 5.
    Chien, C.: A sampled-data iterative learning control using fuzzy network desing. Int. J. Control 73(10), 902–913 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Márquez, M., Ben Youssef, C., Vázquez, G., Waissman, J.: Iterative learning control of a sbr reactor by using a limited number of samples. In: Proc. of the Int. Meeting on Env. Biotech. and Eng., Mexico (2006)Google Scholar
  7. 7.
    Zhang, L., Yang, F.: Fuzzy iterative laerning control design for output traking of discrete-time fuzzy systems. In: Proc. of the Third Conf. on Machine Learning and Cybernetics, Shanghai, pp. 678–682 (2004)Google Scholar
  8. 8.
    Hätönen, J., Owens, D., Moores, K.: An algebraic approach to iterative learning control. Int.J. Control 77(1), 45–54 (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Vázquez, G., Ben-Youssef, C., Waissman, J.: Two step modeling of the biodegradation of phenol by an acclimated activated sludge. Chem. Eng. J. 117, 245–252 (2006)CrossRefGoogle Scholar
  10. 10.
    Ben-Youssef, C., Waissman, J., Vázquez, G.: A new model for phenol biodegradation and activated sludge growth in fedbatch cultures. In: Proc. of the IFAC Symposium on Advanced Control of Chemical Processes, Grammados (2006)Google Scholar
  11. 11.
    Babuška, R.: Fuzzy modeling for control. International series in intelligent technologies. Kluwer Academic Publishers, Boston (1998)Google Scholar
  12. 12.
    Kim, H., Shin, Y.: Design of adaptive fuzzy sliding mode controller based on fuzzy basis function expansion for ufv depth control. Int. J. Control Aut. and Syst. 3(2), 217–224 (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Marco Mürquez
    • 1
  • Julio Waissman
    • 1
  • Olivia Gutü
    • 2
  1. 1.Centro de Investigación en Tecnologías de la Información y Sistemas 
  2. 2.Centro de Investigación en Matemáticas, Unversidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Pachuca Hgo. 42084Mexico

Personalised recommendations