Web Usage Mining Via Fuzzy Logic Techniques

  • Víctor H. Escobar-Jeria
  • María J. Martín-Bautista
  • Daniel Sánchez
  • María-Amparo Vila
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4529)


With the increment of users and information on the Web, mining processes inspired in the traditional data mining ones have been developed. This new recent area of investigation is called Web Mining. Within this area, we study the analysis of web log files in what is called Web Usage Mining. Different techniques of mining to discover usage patterns from web data can be applied in Web Usage Mining. We will also study in a more detailed way applications of Fuzzy Logic in this area. Specially, we apply fuzzy association rules to web log files, and we give initial traces about the application of Fuzzy Logic to personalization and user profile construction.


Web Usage Mining Fuzzy Logic Fuzzy Association Rules Personalization User Profiles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Agrawal et al., 1993]
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD Conference, pp. 207–216 (1993)Google Scholar
  2. [Arotaritei and Mitra., 2004]
    Arotaritei, D., Mitra, S.: Web Mining: a survey in the fuzzy framework. Fuzzy Sets and Systems (2000)Google Scholar
  3. [Au and Chan, 1998]
    Au, W.H., Chan, K.C.C.: An effective algorithm for discovering fuzzy rules in relational databases. In: Proc. of IEEE International Conference on Fuzzy Systems, vol. II, pp. 1314–1319 (1998)Google Scholar
  4. [Carbonell et al., 1998]
    Carbonell, J., Carven, M., Fienberg, S., Mitchell, T., Yang, Y.: Report on the conald workshop on learning from text and the web. In: CONALD Workshop on Learning from Text and The Web (June 1998)Google Scholar
  5. [Cernuzzi and Molas, 2004]
    Cernuzzi, L., Molas, M.L.: Integrando diferentes Técnicas de Data Mining en procesos de Web Usage Mining (2003)Google Scholar
  6. [Cooley et al., 1997]
    Cooley, R., Mobasher, B., Srivastava, J.: Web mining: Grouping Web Page References into Transactions for Mining World Wide Web Browsing Patterns, 1–11 (2000)Google Scholar
  7. [Chakrabati, 2000]
    Chakrabati, S.: Data Mining for hypertext: A tutorial survey. ACM SIGKDD Explorations 1(2), 1–11 (2000)CrossRefGoogle Scholar
  8. [Delgado et al., 2000]
    Delgado, M., Sánchez, D., Vila, M.A.: Fuzzy cardinality based evaluation of quantified sentences. Int. J. Aprox.Reasoning 3, 23 (2000)CrossRefGoogle Scholar
  9. [Delgado et al., 2002]
    Delgado, M., Martín-Bautista, M.J., Sánchez, D., Vila, M.-A.: Mining text data: Special features and patterns. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 140–153. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. [Delgado et al., 2003]
    Delgado, M., Marín, N., Sánchez, D., Vila, M.A.: Fuzzy Association Rules: General Model and Applications. IEEE Transactions on Fuzzy Systems 11, 214–225 (2003)CrossRefGoogle Scholar
  11. [ECML/PKDD 2005]
    ECML/PKDD Conference 2005 Web Site, Porto, Portugal (2005),
  12. [Etzioni, 1996]
    Etzioni, O.: The World Wide Web: Quagmire or gold mine. Comunications of the ACM 39, 65–68 (1996)CrossRefGoogle Scholar
  13. [Garofalakis et al, 1999]
    Garofalakis, M.N., Rastogi, R., Seshadri, S., Shim, K.: Data Mining and the web: Past, present nad future. In: WorkShop on Web Information and Data Managament, pp. 43–47 (1999)Google Scholar
  14. [Hong et al., 1999]
    Hong, T.P., Kuo, C.S., Chi, S.C.: Mining association rules from quantitative data. Intelligent Data Analysis 3, 363–376 (1999)CrossRefzbMATHGoogle Scholar
  15. [Justicia et al., 2004]
    Justicia, C., Martín-Bautista, M.J., Sánchez, D.: Minería de textos: Aplicaciones con lógica difusa (In Spanish). Actas del Congreso Español de Tecnologías con Lógica Difusa, Jaén (2004)Google Scholar
  16. [Kleinberg et al., 1999]
    Kleinberg, J.M., Kumar, R., Raghavan, P.: The Web as a graph: measurements, models, and methods. In: Proceedings of the Fifth Annual International Computing and Combinatorics Conference (1999)Google Scholar
  17. [Kraft et al., 2003]
    Kraft, D.H., Martín-Bautista, M.J., Chen, J., Vila, M.A.: Rules and fuzzy rules in text: concept, extraction and usage. International Journal of Approximate Reasoning 34, 145–161 (2003)CrossRefzbMATHGoogle Scholar
  18. [Kuok et al., 1998]
    Kuok, C.-M., Fu, A., Wong, M.H.: Mining fuzzy association rules in databases. SIGMOD Record 27(1), 41–46 (1998)CrossRefGoogle Scholar
  19. [Lee and Kwang, 1997]
    Lee, J.H., Kwang, H.L.: An extension of association rules using fuzzy sets. In: Proc. of IFSA’97, Prague, Czech Republic (1997)Google Scholar
  20. [Martín-Bautista et al, 2002]
    Martí-Bautista, M.J., Kraft, D.H., Vila, M.A., Chen, J., Cruz, J.: User profiles and fuzzy logic for Web retrieval issues. Soft Computing Journal 6(5), 365–372 (2004)Google Scholar
  21. [Mitra and Pal., 2002]
    Mitra, S., Pal, S.K.: Data Mining in Soft Computing Framework: A Survey. IEEE Transactions on Neural Networks, 3–14 (2002)Google Scholar
  22. [Mobasher, 2005]
    Mobasher, B.: Web Usage Mining and Personalization. In: Singh, M.P. (ed.) Practical Handbook of Internet Computing, CRC Press LLC, Boca Raton (2005)Google Scholar
  23. [Nasraoui et al., 1997]
    Nasraoui, O., Frigui, H., Joshi, A., Krishnappuram, R.: Mining Web accses logs using relational competitive fuzzy clustering. In: Proceedings of springs Symposium On Natural Language Proccesing Form the www, Stanford, California (March 1997)Google Scholar
  24. [Wong et al., 2001]
    Wong, C., Shiu, S., Pal, S.: Mining Fuzzy Association Rules for Web Access Case Adaptation. In: Workshop Proceedings of Soft Computing in Case-Based Reasoning Workshop, in conjunction with the 4th International Conference in Case-Based Reasoning, Vancouver, Canada, pp. 213–220 (2001)Google Scholar
  25. [Zadeh, 1975]
    Zadeh, L.: The concept of linguistic variable and its application to approximate reasoning I. Information Sciences 8, 199–251 (1975)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Víctor H. Escobar-Jeria
    • 1
  • María J. Martín-Bautista
    • 2
  • Daniel Sánchez
    • 2
  • María-Amparo Vila
    • 2
  1. 1.Department of Informatics and Computer Science, Metropolitan Technological University of Santiago de ChileChile
  2. 2.Department of Computer Science and Artificial Intelligence, University of Granada, Periodista Daniel Saucedo Aranda s/n, 18071, GranadaSpain

Personalised recommendations