Advertisement

Possibility Based Modal Semantics for Graded Modifiers

  • Jorma K. Mattila
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4529)

Abstract

A brief introduction to basic modifiers is given. Any modifier with its dual and the corresponding negation form a DeMorgan triple similar to that of t-norms, t-conorms, and negation. The lattice structure of the unit interval with the usual partial order is similar to that of the set of all membership functions. This structure has a certain connection to implication, by means of the subsethood of fuzzy sets, and it is possible to create a similar expression for modifiers as the axiom of reflexivity is in modal logic. Also, other connections to modal logics can be found. This motivates to develop a formal semantics to modifier logic by means of that of modal logic. Actually, this kind of logic is so-called metalogic concerning either true or false statements about properties of modifiers. This version is based on graded possibility operations. Hence, semantic tools for weakening modifiers are derived. The corresponding things for substantiating modifiers are constructed by means of duality. Finally, some outlines for modifier systems are considered.

Keywords

Modality Modifier metalogic Semantics of Modal Logic Semantics of Modifier Logic Modifier system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)zbMATHGoogle Scholar
  2. 2.
    Dombi, J.: A fuzzy halmazok operátorainak szerkezete a többtényezós döntések szempontjából. Kandidátusi Értekezés, Hungarian Academy of Sciences, Szeged (1993)Google Scholar
  3. 3.
    Dombi, J.: Theoretical Concepts of Modifiers and Hedges. In: Niskanen, V.A., Kortelainen, J. (eds.) On the Edge of Fuzziness. Acta Universitatis Lappeenrantaensis, vol. 179 (2004)Google Scholar
  4. 4.
    Habson, B., Gärdenfors, P.: A guide to intensional semantics. In: Modality, Morality and Other Problems of Sense and Nonsense: Essays Dedicated to Sören Halldén, CWK Gleerup Bokförlag, Lund (1973)Google Scholar
  5. 5.
    Hughes, G.E., Cresswell, M.J.: An Introduction to Modal Logic (reprint). Methuen and Co., London (1985)Google Scholar
  6. 6.
    Kripke, S.A.: Semantical considerations on modal logic. Acta Philosophica Fennica, Fasc. XVI (1963)Google Scholar
  7. 7.
    Lakoff, G.: Hedges: A study in meaning criteria and the logic of fuzzy concepts. The Journal of Philosophical Logic 2 (1973)Google Scholar
  8. 8.
    Lemmon, E.J.: An Introduction to Modal Logic. In: Segerberg, K. (ed.) American Philosophical Quarterly, Monograph No. 11, Basil Blackwell, Oxford (1977)Google Scholar
  9. 9.
    Mattila, J.K.: Modeling fuzziness by Kripke structures. In: Terano, T., Sugeno, M., Mukaidono, M., Shigemasu, K. (eds.) Fuzzy Engineering toward Human Friendly Systems, Proc. of IFES ’91, Yokohama, Japan, Nov. 13 - 15, 1991, vol. 2,Google Scholar
  10. 10.
    Mattila, J.K.: On modifier logic. In: Zadeh, L.A., Kacprzyk, J. (eds.) Fuzzy Logic for Management of Uncertainty, John Wiley & Sons, Inc., New York (1992)Google Scholar
  11. 11.
    Mattila, J.K.: Completeness of propositional modifier logic. Research Report 55, Lappeenranta University of Technology, Department of Information Technology (1995)Google Scholar
  12. 12.
    Mattila, J.K.: Modifier Logics Based on Graded Modalities. Journal of Advanced Computational Intelligence and Intelligent Informatics 7(2) (2003)Google Scholar
  13. 13.
    Mattila, J.K.: Modifiers Based on Some t-norms in Fuzzy Logic. Soft Computing 8(10), 663–667 (2004)zbMATHCrossRefGoogle Scholar
  14. 14.
    Mattila, J.K.: On Łukasiewicz Modifier Logic. Journal of Advanced Computational Intelligence and Intelligent Informatics 9(5) (2005)Google Scholar
  15. 15.
    Resconi, G., Klir, G.J., St. Clair, U.H.: Uncertainty and modal logic. In: Proceedings of Fifth International Fuzzy Systems Association World Congress’93, Seoul, Korea, July 4 - 9, 1993, vol. I (1993)Google Scholar
  16. 16.
    Zadeh, L.A.: Fuzzy Sets. Information and Control 8 (1965)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Jorma K. Mattila
    • 1
  1. 1.Lappeenranta University of Technology, Department of Mathematics and Physics, P.O. Box 20, FIN-53851 LappeenrantaFinland

Personalised recommendations