Advertisement

Bipolar Queries Using Various Interpretations of Logical Connectives

  • Sławomir Zadrożny
  • Janusz Kacprzyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4529)

Abstract

In [1,2] we studied various concepts of bipolar queries (cf. Dubois and Prade [3]). We advocated the use of a fuzzified version of the original crisp definition by Lacroix and Lavency [4]. However, the general fuzzification proposed leaves open the choice of a representation of logical connectives and quantifiers. In the present paper we study the influence of the choice some representations that are popular in fuzzy logic on matching degrees of the tuples and their resulting ordering.

Keywords

Fuzzy Logic Query Language Railway Station Logical Connective Implication Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zadrożny, S.: Bipolar queries revisited. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 387–398. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Zadrożny, S., Kacprzyk, J.: Bipolar queries and queries with preferences. In: Proc. of DEXA’06, Krakow, Poland, pp. 415–419. IEEE, Los Alamitos (2006)Google Scholar
  3. 3.
    Dubois, D., Prade, H.: Bipolarity in flexible querying. In: Andreasen, T., Motro, A., Christiansen, H., Larsen, H.L. (eds.) FQAS 2002. LNCS (LNAI), vol. 2522, pp. 174–182. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Lacroix, M., Lavency, P.: Preferences: Putting more knowledge into queries. In: Proc. of VLDB’1987, Brighton, UK, pp. 217–225 (1987)Google Scholar
  5. 5.
    Rosado, A., Ribeiro, R., Zadrożny, S., Kacprzyk, J.: Flexible query languages for relational databases: an overview. In: Bordogna, G., Psaila, G. (eds.) Flexible databases supporting imprecision and uncertainty, pp. 3–53. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Chomicki, J.: Querying with intrinsic preferences. In: Jensen, C.S., Jeffery, K.G., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 34–51. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Bosc, P., Pivert, O.: Discriminated answers and databases: fuzzy sets as a unifying expression means. In: Proc. FUZZ-IEEE’1992, San Diego, USA, pp. 745–752 (1992)Google Scholar
  8. 8.
    Bosc, P., Pivert, O.: An approach for a hierarchical aggregation of fuzzy predicates. In: Proc, of FUZZ-IEEE’1992, San Francisco, USA, pp. 1231–1236 (1993)Google Scholar
  9. 9.
    Mesiar, R., Thiele, H.: On T-Quantifiers and S-Quantifiers. In: Novak, V., Perfilieva, I. (eds.) Discovering the World with Fuzzy Logic, pp. 310–326. Physica-Verlag, Heidelberg (2000)Google Scholar
  10. 10.
    Dubois, D., Prade, H.: Using fuzzy sets in flexible querying: why and how? In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds.) Flexible Query Answering Systems, pp. 45–60. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Sławomir Zadrożny
    • 1
    • 2
  • Janusz Kacprzyk
    • 1
  1. 1.Systems Research Institute, Polish Academy of Sciences, WarszawaPoland
  2. 2.WIT – Warsaw School of Information Technology, WarszawaPoland

Personalised recommendations