Advertisement

Qualification of Fuzzy Statements Under Fuzzy Certainty

  • A. González
  • N. Marín
  • O. Pons
  • M. A. Vila
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4529)

Abstract

In many problems the information can be imprecise and uncertain simultaneously. Linguistic terms can be then used to represent each one of these aspects. In some applications it is desirable to combine imprecision and uncertainty into a single value which appropriately describes the original information. We propose a method to combine imprecision and uncertainty when they are expressed as trapezoidal fuzzy numbers and the final goal is to obtain a normalized fuzzy number. This property is very useful in several applications like flexible querying processes, where the linguistic label used in the query is always normalized.

Keywords

Membership Function Fuzzy Number Information Function Linguistic Term Fuzzy Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bordogna, G., Pasi, G.: Modeling Linguistic Qualifiers of Uncertainty in a Fuzzy Database. Int. Journ. of Intelligent Systems 15, 995–1014 (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Dubois, D.: Modeles mathematiques de l’imprecis et de l’incertain en vue d’applications aux techniques d’aide a la decision. Ph.D Thesis. Université Scientifique et Médicale de Grenoble (1983)Google Scholar
  3. 3.
    Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1985)zbMATHGoogle Scholar
  4. 4.
    Dubois, D., Prade, H., Yager, R.: Merging Fuzzy Information. In: Bezdek, J.C., Dubois, D., Prade, H. (eds.) Fuzzy Sets in Approximate Reasoning and Information Systems, pp. 335–401. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  5. 5.
    Gonzalez, A.: Métodos Subjetivos para la Comparación de Números Difusos. PhD Thesis. Granada University (1987)Google Scholar
  6. 6.
    Gonzalez, A., Pons, O., Vila, M.A.: Dealing with uncertainty and imprecision by means of fuzzy numbers. Int. Journal of Approximate Reasoning 21, 233–256 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Kampé de Feriét, J.: La theorie generaliseé de l’information et le mesure subjetive de l’information. In: Kampé de Fèriet, J., Picard, C.F. (eds.) Théories de l’information. Lecture notes in Math., vol. 398, pp. 1–28. Springer, Heidelberg (1973)CrossRefGoogle Scholar
  8. 8.
    Pons, O., Cubero, J.C., Gonzalez, A., Vila, M.A.: Uncertain Fuzzy Values still in the Framework of First Order Logic. In: Proc. of Second Int. Workshop on Logic Programming and Soft Computing: Theory and Applications, Manchester, U.K. (1989)Google Scholar
  9. 9.
    Suárez García, F., Gil Alvarez, P.: Two families of fuzzy integrals. Fuzzy Sets Syst. 18(1), 67–81 (1986)CrossRefzbMATHGoogle Scholar
  10. 10.
    Sugeno, M.: Theory of fuzzy integrals and its applications. Thesis. Tokio Inst. of Technology (1974)Google Scholar
  11. 11.
    Yager, R.R.: Measurement of Properties on Fuzzy Sets and Possibility Distributions. In: Klement, E.P. (ed.) Proc. 3rd Intern. Seminar on Fuzzy Set Theory, Johannes Keplas Univ. Liuz, pp. 211–222 (1981)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • A. González
    • 1
  • N. Marín
    • 1
  • O. Pons
    • 1
  • M. A. Vila
    • 1
  1. 1.Dpto. Ciencias de la Computación e I.A., Universidad de Granada, 18071 Granada, Spain 

Personalised recommendations