The Role of Entropy in Intuitionistic Fuzzy Contrast Enhancement

  • Ioannis K. Vlachos
  • George D. Sergiadis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4529)


In this paper we study the impact of selecting different entropy measures in the framework of intuitionistic fuzzy image processing and especially in the process of intuitionistic fuzzification of images. Different notions of entropy characterized by different properties are reviewed and their behavior is thoroughly studied under the scope of performing contrast enhancement. Finally, experimental results using gray-scale images reveal the characteristics of the aforementioned measures.


Contrast Enhancement Geometrical Representation Entropy Measure Fuzzy Entropy Intuitionistic Fuzzy Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vlachos, I.K., Sergiadis, G.D.: Towards intuitionistic fuzzy image processing. In: Proc. International Conference on Computational Intelligence for Modelling, Control and Automation, Vienna, Austria, vol. 1, pp. 2–7 (2005)Google Scholar
  2. 2.
    Vlachos, I.K., Sergiadis, G.D.: Intuitionistic Fuzzy Image Processing. In: Soft Computing in Image Processing: Recent Advances. Studies in Fuzziness and Soft Computing, vol. 210, pp. 385–416. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Atanassov, K.T.: Intuitionistic Fuzzy Sets: Theory and Applications. Studies in Fuzziness and Soft Computing. Physica–Verlag, Heidelberg (1999)zbMATHGoogle Scholar
  5. 5.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst 114, 505–518 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kosko, B.: Fuzziness vs. probability. Int. J. Gen. Syst. 17, 211–240 (1990)zbMATHCrossRefGoogle Scholar
  8. 8.
    Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 118, 467–477 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    De Luca, A., Termini, S.: A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Inf. Control 20, 301–312 (1972)CrossRefGoogle Scholar
  10. 10.
    Burillo, P., Bustince, H.: Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst. 78, 305–316 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Szmidt, E., Kacprzyk, J.: Entropy and similarity of intuitionistic fuzzy sets. In: Proc. Information Processing and Management of Uncertainty in Knowledge-Based Systems, Paris, France, pp. 2375–2382 (2006)Google Scholar
  12. 12.
    Vlachos, I.K., Sergiadis, G.D.: Intuitionistic fuzzy information–Applications to pattern recognition. Pattern Recognit. Lett. 28, 197–206 (2006)CrossRefGoogle Scholar
  13. 13.
    Vlachos, I.K., Sergiadis, G.D.: Inner product based entropy in the intuitionistic fuzzy setting. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 14, 351–366 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Pal, S.K., King, R.A.: Image enhancement using fuzzy set. Electron. Lett. 16, 376–378 (1980)CrossRefGoogle Scholar
  15. 15.
    Pal, S.K., King, R.A.: Image enhancement using smoothing with fuzzy sets. IEEE Trans. Syst. Man Cybern. 11, 495–501 (1981)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Ioannis K. Vlachos
    • 1
  • George D. Sergiadis
    • 1
  1. 1.Aristotle University of Thessaloniki, Faculty of Technology, Department of Electrical & Computer Engineering, Telecommunications Division, University Campus, GR–54124, ThessalonikiGreece

Personalised recommendations