Image Threshold Using A-IFSs Based on Bounded Histograms

  • Pedro Couto
  • Humberto Bustince
  • Vitor Filipe
  • Edurne Barrenechea
  • Miguel Pagola
  • Pedro Melo-Pinto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4529)


Atanassov’s intuitionistic fuzzy sets (A-IFSs) have been used recently to determine the optimal threshold value for gray-level image segmentation [1]. Atanassov’s intuitionistic fuzzy index values are used for representing the unknowledge/ignorance of an expert on determining whether a pixel of the image belongs to the background or the object of the image. This optimal global threshold of the image is computed automatically, regardless of the actual image analysis process.

Although global optimal thresholding techniques give good results under experimental conditions, when dealing with real images having several objects and the segmentation purpose is to point out some application-specific information, one should use heuristic techniques in order to obtain better thresholding results.

This paper introduces an evolution of the above mentioned technique intended for use with such images. The proposed approach takes into account the image and segmentation specificities by using a two-step procedure, with a restricted set of the image gray-levels.

Preliminary experimental results and comparison with other methods are presented.


Fuzzy Sets Theory Applications Atanassov’s Intuitionistic Fuzzy Sets (A-IFSs) computer Vision Pattern Recognition Digital Image Processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bustince, H., Pagola, M., Melo-Pinto, P., Barrenechea, E., Couto, P.: Image threshold computation by modelizing knowledge/unknowledge by means of A-IFSs. In: Fuzzy Sets and Their Extensions: Representation, Aggregation and Models. Studies in Fuzziness and Soft Computing, vol. 220, pp. 225–240. Springer, Heidelberg (2008)Google Scholar
  2. 2.
    Jawahar, C.V., Biswas, P.K., Ray, A.K.: Analysis of fuzzy thresholding schemes. Pattern Recognition 33, 1339–1349 (2000)CrossRefGoogle Scholar
  3. 3.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 146–165 (2004)CrossRefGoogle Scholar
  4. 4.
    Fu, K., Mui, J.: A survey on image segmentation. Pattern Recognition 13, 3–16 (1981)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Haralick, R., Shapiro, L.: Image segmentation techniques. Computer Vision, Graphics and Image Processing 29, 100–132 (1985)CrossRefGoogle Scholar
  6. 6.
    Pal, N., Pal, S.: A review on image segmentation techniques. Pattern Recognition 26, 1277–1294 (1993)CrossRefGoogle Scholar
  7. 7.
    Barrenechea, E.: Image Thresholding with Interval-valued Fuzzy Sets. Edge Detection. Contrast. PHD Thesis - Universidad Pública de Navarra (2005)Google Scholar
  8. 8.
    Burillo, P., Bustince, H.: Entropy on intuitionistic fuzzy sets and on intervalvalued fuzzy sets. Fuzzy Sets and Systems 78, 81–103 (1996)CrossRefGoogle Scholar
  9. 9.
    Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Atanassov, K.: Intuitionistic fuzzy sets. Theory and applications. Studies in Fuzziness and Soft Computing. Springer, New York (1999)zbMATHGoogle Scholar
  11. 11.
    Pereira, J., Cabrita, A., Filipe, V., Bulas-Cruz, J., Couto, P., Melo-Pinto, P., Costa, L., Geuna, S., Maurício, A., Varejão, A.: A comparison analysis of hindlimb kinematics during overground and treadmill locomotion in rats. Behavioural Brain Research 172, 212–218 (2006)CrossRefGoogle Scholar
  12. 12.
    Filipe, V., Pereira, J., Costa, L., Maurício, A., Couto, P., Melo-Pinto, P., Varejão, A.: Effect of skin movement on the analysis of hindlimb kinematics during treadmill locomotion in rats. Journal of Neuroscience Methods 153, 55–61 (2006)CrossRefGoogle Scholar
  13. 13.
    Varejão, A., Cabrita, A., Patrício, J., Bulas-Cruz, J., Gabriel, R., Melo-Pinto, P., Couto, P., Meek, M.: Functional assesment of peripheal nerve recovery in the rat: Gait Kinematics. Microsurgery 21, 383–388 (2001)CrossRefGoogle Scholar
  14. 14.
    Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. on Systems, Man, and Cybern. 9, 62–66 (1979)CrossRefGoogle Scholar
  15. 15.
    Kittler, J., Illingworth, J.: Minimum Error Thresholding. Pattern Recognition 19 (1986)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Pedro Couto
    • 1
  • Humberto Bustince
    • 2
  • Vitor Filipe
    • 1
  • Edurne Barrenechea
    • 2
  • Miguel Pagola
    • 2
  • Pedro Melo-Pinto
    • 1
  1. 1.CETAV – University of Trás-os-Montes e Alto Douro, Ap. 1014, 5001-911 Vila RealPortugal
  2. 2.Departamento de Automática y Computación - Universidad Pública de Navarra, Campus de Arrosadía, s/n, 31006 PamplonaSpain

Personalised recommendations