Advertisement

Knitting for Fun: A Recursive Sweater

  • Anna Bernasconi
  • Chiara Bodei
  • Linda Pagli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4475)

Abstract

In this paper we investigate the relations between knitting and computer science. We show that the two disciplines share many concepts. Computer science, in particular algorithm theory, can suggest a lot of powerful tools that can be used both in descriptive and prescriptive ways and that apparently have not yet been used for creative knitting. The obtained results are short (optimal size) recursive descriptions for complex patterns; creation of new complex recursive patterns; and the application of three-valued algebra operations to combine and create a wide variety of new patterns.

Keywords

Modeling Knitting Pattern Knitting Diagrams Checkerboard and Sierpinski and Butterfly patterns  Knitting Complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, P., Malcolm, T., Tennant, R., Fall, C.: Knitting for Dummies (2002)Google Scholar
  2. 2.
    Griswold, R.E.: Designing Weave Structures Using Boolean Operations, Part 1,2,3, http://www.cs.arizona.edu/patterns/weaving/webdocs.html
  3. 3.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, London (2001)zbMATHGoogle Scholar
  4. 4.
    Knuth, D.E.: The Art of Computer Algorithms: Sorting and Searching, vol. 3. Addison-Wesley, London (1973)zbMATHGoogle Scholar
  5. 5.
    Leighton, F.T.: Parallel Algorithms and Architectures: Array, Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo, CA (1992)zbMATHGoogle Scholar
  6. 6.
    Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  7. 7.
    Suzuki, D., Miyazaki, T., Yamada, K., Nakamura, T., Itoh, H.: A Supporting System for Colored Knitting Design. In: Logananthara, R., Palm, G., Ali, M. (eds.) IEA/AIE 2000. LNCS (LNAI), vol. 1821, Springer, Heidelberg (2000)Google Scholar
  8. 8.
    The Home of Mathematical Knitting, http://www.toroidalsnark.net/mathknit.html

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Anna Bernasconi
    • 1
  • Chiara Bodei
    • 1
  • Linda Pagli
    • 1
  1. 1.Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo, 3, I-56127, PisaItaly

Personalised recommendations