Advertisement

Sorting the Slow Way: An Analysis of Perversely Awful Randomized Sorting Algorithms

  • Hermann Gruber
  • Markus Holzer
  • Oliver Ruepp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4475)

Abstract

This paper is devoted to the “Discovery of Slowness.” The archetypical perversely awful algorithm bogo-sort, which is sometimes referred to as Monkey-sort, is analyzed with elementary methods. Moreover, practical experiments are performed.

Keywords

Hypergeometric Function Average Case Sorting Algorithm Random Array Input Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biedl, T., Chan, T., Demaine, E.D., Fleischer, R., Golin, M., King, J.A., Munro, J.I.: Fun-sort—or the chaos of unordered binary search. Discrete Applied Mathematics 144(3), 231–236 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Broder, A., Stolfi, J.: Pessimal algorithms and simplexity analysis. SIGACT News 16(3), 49–53 (1984)CrossRefGoogle Scholar
  3. 3.
    Flatto, L., Odlyzko, A.M., Wales, D.B.: Random shuffles and group presentations. Annals of Probability 13(1), 154–178 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-Wesley, London (1994)zbMATHGoogle Scholar
  5. 5.
    Knuth, D.E.: Seminumerical Algorithms, The Art of Computer Programming, vol. 2. Addison-Wesley, London (1981)zbMATHGoogle Scholar
  6. 6.
    Walt Disney’s Mary Poppins. VHS Video Cassette, [Walt Disney Home Video 023-5] (1980)Google Scholar
  7. 7.
    Raymond, E.S.: The New Hacker’s Dictionary. MIT Press, Cambridge (1996)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Hermann Gruber
    • 1
  • Markus Holzer
    • 2
  • Oliver Ruepp
    • 2
  1. 1.Institut für Informatik, Ludwig-Maximilians-Universität München, Oettingenstraße 67, D-80538 MünchenGermany
  2. 2.Institut für Informatik, Technische Universität München, Boltzmannstraße 3, D-85748 Garching bei MünchenGermany

Personalised recommendations