Advertisement

Automated, Accurate and Fast Segmentation of 4D Cardiac MR Images

  • Jean Cousty
  • Laurent Najman
  • Michel Couprie
  • Stéphanie Clément-Guinaudeau
  • Thomas Goissen
  • Jerôme Garot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4466)

Abstract

We propose a new automated and fast procedure to segment the left ventricular myocardium in 4D (3D+t) cine-MRI sequences based on discrete mathematical morphology. Thanks to the comparison with manual segmentation performed by two cardiologists, we demonstrate the accuracy of the proposed method. The precision of the ejection fraction and myocardium mass measured from segmentations is also assessed. Furthermore, we show that the proposed 4D procedure maintains the temporal coherency between successive 3D segmentations.

Keywords

Manual Segmentation Left Ventricular Myocardium Endocardial Border Myocardium Mass Segmentation Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buser, P.T., Auffermann, W., Holt, W.W., Wagner, S., Kircher, B., Wolfe, C., Higgins, C.B.: Noninvasive evaluation of global left ventricular function with use of cine nuclear magnetic resonance. Journal of the American College of Cardiology 2(13), 1294–1300 (1989)CrossRefGoogle Scholar
  2. 2.
    McInerney, T., Terzopoulos, D.: A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. Computerized Medical Imaging and Graphics 19(1), 69–83 (1995)CrossRefGoogle Scholar
  3. 3.
    van der Geest, R.J., Buller, V.G.M., Jansen, E., Lamb, H.J., Baur, L.H.B., van der Wall, E.E., de Roos, A., Reiber, J.H.C.: Comparison between manual and semiautomated analysis of left ventricular parameters from short-axis MR images. Journal of Computer Assisted Tomography 21, 756–765 (1997)CrossRefGoogle Scholar
  4. 4.
    Mitchell, S.C., Lelieveldt, B.P.F., van der Geest, R.J., Bosch, H.G., Reiber, J.H.C., Sonka, M.: Multistage hybrid active appearance model matching: Segmentation of left and right ventricles in cardiac mr images. IEEE Trans. on Medical Imaging 20(5), 415–423 (2001)CrossRefGoogle Scholar
  5. 5.
    Kaus, M.R., von Berg, J., Weese, J., Niessen, W., Pekar, V.: Automated segmentation of the left ventricle in cardiac MRI. Medical Image Analysis 8, 245–254 (2004)CrossRefGoogle Scholar
  6. 6.
    Lötjönen, J., Kivistö, S., Koikkalainen, J., Smutek, D., Lauerma, K.: Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images. Medical Image Analysis 8, 371–386 (2004)CrossRefGoogle Scholar
  7. 7.
    van Assen, H., Danilouchkine, M.G., Frangi, A.F., Ordàs, S., Westenberg, J.J.M., Reiber, J.H.C., Lelieveldt, B.P.F.: SPASM: A 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data. Medical Image Analysis 10, 286–303 (2006)CrossRefGoogle Scholar
  8. 8.
    Lorenzo-Valdés, M., Sanchez-Ortiz, G.I., Elington, A.G., Mohiaddin, R.H., Rueckert, D.: Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Medical Image Analysis 10, 286–303 (2006)CrossRefGoogle Scholar
  9. 9.
    Montagnat, J., Delingette, H.: 4D deformable models with temporal constraints: application to 4D cardiac image segmentation. Medical Image Analysis 9, 87–100 (2005)CrossRefGoogle Scholar
  10. 10.
    Soille, P.: Morphological Image Analysis. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  11. 11.
    Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. In: Dougherty, E. (ed.) Mathematical Morphology in Image Processing, Marcel Decker, pp. 443–481 (1993)Google Scholar
  12. 12.
    Couprie, M., Coeurjolly, D., Zrour, R.: Discrete bisector function and Euclidean skeleton in 2D and 3D. Image and Vision Computing (to appear 2006)Google Scholar
  13. 13.
    Najman, L., Couprie, M., Bertrand, G.: Watersheds, mosaics and the emergence paradigm. Discrete Applied Mathematics 147(2-3), 301–324 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Couprie, M., Najman, L., Bertrand, G.: Quasi-linear algorithms for the topological watershed. Journal of Mathematical Imaging and Vision 22(2-3), 231–249 (2005)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Jean Cousty
    • 1
  • Laurent Najman
    • 1
  • Michel Couprie
    • 1
  • Stéphanie Clément-Guinaudeau
    • 2
  • Thomas Goissen
    • 2
  • Jerôme Garot
    • 2
  1. 1.Institut Gaspard-Monge, Laboratoire A2SI, Groupe ESIEEFrance
  2. 2.CHU Henri Mondor, CréteilFrance

Personalised recommendations