Simulation of 3D Ultrasound with a Realistic Electro-mechanical Model of the Heart

  • Q. Duan
  • P. Moireau
  • E. D. Angelini
  • D. Chapelle
  • A. F. Laine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4466)


This paper presents a first set of experiments to integrate a realistic electro-mechanical model of a beating heart into simulated real-time three-dimensional (RT3D) ultrasound data. A novel ultrasound simulation framework is presented, extended from the model of Meunier [12]. True three-dimensional transducer modeling was performed, using RT3D acquisition design. Myocardium and blood scattering parameters were defined in three dimensions. Ultrasound data sets were generated for a normal case and a pathological case, simulating left bundle branch block. Accuracy of an optical flow tracking method was evaluated on the simulated data to measure displacements on the myocardial surfaces and inside the myocardium over a cardiac cycle. The proposed simulation framework has important motivations in a cardiac modeling context as part of this project is focused on the design of effective parameter estimation methods, based on cardiac imaging.


Point Spread Function Left Bundle Branch Block Speckle Tracking Rayleigh Distribution Medical Image Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelini, E., Homma, S., Pearson, G., Holmes, J., Laine, A.: Segmentation of real-time three-dimensional ultrasound for quantification of ventricular function: a clinical study on right and left ventricles. Ultrasound in Medicine and Biology 31(9), 1143–1158 (2005)CrossRefGoogle Scholar
  2. 2.
    Angelini, E., Laine, A., Takuma, S., Holmes, J., Homma, S.: LV volume quantification via spatio-temporal analysis of real-time 3D echocardiography. IEEE Transactions on Medical Imaging 20(6), 457–469 (2001)CrossRefGoogle Scholar
  3. 3.
    Bamber, J.C., Dickinson, R.J.: Ultrasonic b-scanning: a computer simulation. Physics in Medicne and Biology 25, 463–479 (1980)CrossRefGoogle Scholar
  4. 4.
    Bresenham, V.: Algorithm for computer control of a digital plotter. IBM Systems Journal 4(1), 25–30 (1965)CrossRefGoogle Scholar
  5. 5.
    Clifford, L., Fitzgerald, P., James, D.: Non-rayleigh first-order statistics of ultrasonic backscatter from normal myocardium. Ultrasound in Medicine and Biology 19(6), 487–495 (1993)CrossRefGoogle Scholar
  6. 6.
    Duan, Q., Angelini, E., Gerard, O., Homma, S., Laine, A.: Comparing optical-flow based methods for quantification of myocardial deformations on rt3d ultrasound. In: IEEE International Symposium on Biomedical Imaging, Arlington, VA, USA, pp. 173–176. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  7. 7.
    Duan, Q., Angelini, E.D., Herz, S.L., Ingrassia, C.M., Gerard, O., Costa, K.D., Holmes, J.W., Laine, A.F.: Dynamic cardiac information from optical flow using four dimensional ultrasound. In: International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), pp. 4465–4468. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  8. 8.
    Duan, Q., Angelini, E.D., Herz, S.L., Ingrassia, C.M., Gerard, O., Costa, K.D., Holmes, J.W., Laine, A.F.: Evaluation of optical flow algorithms for tracking endocardial surfaces on three-dimensional ultrasound data. In: SPIE International Symposium, Medical Imaging San Diego, CA, USA (2005)Google Scholar
  9. 9.
    Jensen, J.A.: Field: A program for simulating ultrasound systems. Medical & Biological Engineering & Computing 34(1.1), 351–353 (1996)Google Scholar
  10. 10.
    Kallel, F., Bertrand, M., Meunier, J.: Speckle motion artifact under tissue rotation. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Controls 41, 105–122 (1994)CrossRefGoogle Scholar
  11. 11.
    Meunier, J.: Tissue motion assessment from 3d echographic speckle tracking. Physics in Medicine and Biology 43, 1241–1254 (1998)CrossRefGoogle Scholar
  12. 12.
    Meunier, J., Bertrand, M.: Echographic image mean gray level changes with tissue dynamics: A system-based model study. IEEE Transactions on Biomedical Engineering 42(4), 403–410 (1995)CrossRefGoogle Scholar
  13. 13.
    Meunier, J., Bertrand, M.: Ultrasonic texture motion analysis: theory and simulation. IEEE Transactions on Medical Imaging 14(2), 293–300 (1995)CrossRefGoogle Scholar
  14. 14.
    Narayanan, V.M., Shankar, P.M., Reid, J.M.: Non-rayleigh statistics of ultrasonic backscattered signals. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 41(6), 845–852 (1994)CrossRefGoogle Scholar
  15. 15.
    Neu, J.C., Krassowska, W.: Homogenization of syncytial tissues. Crit. Rev. Biomed. Eng. 21, 137–199 (1993)Google Scholar
  16. 16.
    Papademetris, X., Sinusas, A.J., Dione, D.P., Duncan, J.S.: Estimation of 3D left ventricular deformation from echocardiography. Medical Image Analysis 8, 285–294 (2004)CrossRefGoogle Scholar
  17. 17.
    Sainte-Marie, J., Chapelle, D., Cimrman, R., Sorine, M.: Modeling and estimation of the cardiac electromechanical activity. Computers and Structures 84, 1743–1759 (2006)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Sarti, A., Bassi, P., Lamberti, C.: 3D modeling of phased array generated ultrasounds in lossy media. Computerized Medical Imaging and Graphics 17(4–5), 339–343 (1994)Google Scholar
  19. 19.
    Seggie, D.A., Leeman, S., Burge, R.E.: Realistic simulation of b-scan images. In: IEEE Ultrasonics Symposium, pp. 714–717. IEEE Computer Society Press, Los Alamitos (1983)Google Scholar
  20. 20.
    Sermesant, M., Forest, C., Pennec, X., Delingette, H., Ayache, N.: Deformable biomechanical models: Application to 4d cardiac image analysis. Medical Image Analysis 7(4), 475–488 (2003)CrossRefGoogle Scholar
  21. 21.
    Sermesant, M., Moireau, P., Camara, O., Sainte-Marie, J., Andriantsimiavona, R., Cimrman, R., Hill, D.L., Chapelle, D., Razavi, R.: Cardiac function estimation from mri using a heart model and data assimilation: Advances and difficulties. Medical Image Analysis 10(4), 642–656 (2006)CrossRefGoogle Scholar
  22. 22.
    Smith, S.W., Pavy, H.G., Von Ramm, O.T.: High speed ultrasound volumetric imaging system-part I: Transducer design and beam steering. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 38(2), 100–108 (1991)CrossRefGoogle Scholar
  23. 23.
    Smith, S.W., Ramm, O.T.V.: Real time volumetric ultrasound imaging system. Journal of Digital Imaging 3, 261–266 (1990)CrossRefGoogle Scholar
  24. 24.
    Suhling, M., Arigovindan, M., Jansen, C., Hunziker, P., Unser, M.: Myocardial motion analysis from b-mode echocardiograms. IEEE Transactions on Image Processing 14, 525–553 (2005)CrossRefGoogle Scholar
  25. 25.
    Tuthill, T.A., Sperry, R.H., Parker, K.J.: Deviations from rayleigh statistics in ultrasonic speckle. Ultrasonic Imaging 10(2), 81–89 (1988)CrossRefGoogle Scholar
  26. 26.
    Von Ramm, O., Smith, S., Pavy, H.G.: High-speed ultrasound volumetric imaging system part II: parallel processing and image display. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 38(2), 109–115 (1991)CrossRefGoogle Scholar
  27. 27.
    Wagner, R.F., Insana, M.F., Brown, D.G.: Statistical properties of radiofrequency and envelope-detected signals with applications to medical ultrasound. Journal of the Optical Society of America 4, 910–922 (1987)CrossRefGoogle Scholar
  28. 28.
    Yen, J.T., Smith, S.W.: Real-time rectilinear volumetric imaging. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 49(1), 114–124 (2006)CrossRefGoogle Scholar
  29. 29.
    Yen, J.T., Steinberg, J.P., Smith, S.W.: Sparse 2D array design for real-time rectilinear volumetric imaging. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 47(1), 93–110 (2000)CrossRefGoogle Scholar
  30. 30.
    Yu, W., Yan, P., Sinusas, A.J., Thiele, K., Duncan, J.S.: Towards pointwise motion tracking in echocardiographic image sequences: Comparing the reliability of different features for speckle tracking. Medical Image Analysis 10, 495–508 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Q. Duan
    • 1
  • P. Moireau
    • 2
  • E. D. Angelini
    • 3
  • D. Chapelle
    • 2
  • A. F. Laine
    • 1
  1. 1.Dpt. of Biomedical Eng., Columbia University, NYUSA
  2. 2.Project MACS, INRIA-RocquencourtFrance
  3. 3.Dpt. TSI, GET-Ecole Nationale Supérieure des Télécommunications, LTCI CNRS-UMR 5141France

Personalised recommendations