Strain Measurement in the Left Ventricle During Systole with Deformable Image Registration

  • Nikhil S. Phatak
  • Steve A. Maas
  • Alexander I. Veress
  • Nathan A. Pack
  • Edward V. R. Di Bella
  • Jeffrey A. Weiss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4466)


The objective of this study was to validate a deformable image registration technique, termed Hyperelastic Warping, for left ventricular strain measurement during the systole using cine-gated nontagged MRI with strains measured from tagged MRI. Tagged and non-tagged cine images were obtained on a 1.5 T Siemens Avanto clinical scanner with a TrueFISP imaging sequence. The Hyperelastic Warping solution was evolved using a series of non-tagged images in 10 phases from end-diastole to end-systole. The solution may be considered as ten separate Warping problems with multiple Templates and Targets. At each stage, an active contraction was initially applied to the FE model, and then Warping penalty forces were utilized to generate the final registration. Warping results for circumferential strain were correlated (R2 =0.59) with results obtain from tagged MR images analyzed with a HARP algorithm. Results for fiber stretch, LV twist, and transmural strain distribution were similar to values in the literature. Hyperelastic Warping represents a novel approach for quantifying 3-D regional strains within the myocardium with a high resolution.


Medial Collateral Ligament Circumferential Strain Sarcomere Length Active Contraction Deformable Image Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Papademetris, X., et al.: Estimation of 3-D left ventricular deformation from medical images using biomechanical models. IEEE Trans. Med. Imaging 21(7), 786–800 (2002)CrossRefGoogle Scholar
  2. 2.
    Waldman, L.K., Fung, Y.-C., Covell, J.W.: Transmural myocardial deformation in the canine left ventricle: normal in vivo three-dimensional finite strains. Circulation Research 57, 152–163 (1985)Google Scholar
  3. 3.
    Ingels Jr., N.B., et al.: Evaluation of methods for quantitating left ventricular segmental wall motion in man using myocardial markers as a standard. Circulation 61(5), 966–972 (1980)Google Scholar
  4. 4.
    McVeigh, E.R., Zerhouni, E.A.: Noninvasive measurement of transmural gradients in myocardial strain with MR imaging. Radiology 180(3), 677–683 (1991)Google Scholar
  5. 5.
    Weidemann, F., et al.: Doppler myocardial imaging. A new tool to assess regional inhomogeneity in cardiac function. Basic Research in Cardiology 96(6), 595–605 (2001)CrossRefGoogle Scholar
  6. 6.
    Lahiri, A., et al.: Effects of chronic treatment with calcium antagonists on left ventricular diastolic function in stable angina and heart failure. Circulation 81(suppl III), 130–138 (1990)Google Scholar
  7. 7.
    Veress, A.I., et al.: Strain measurement in coronary arteries using intravascular ultrasound and deformable images. J. Biomech. Eng. 124(6), 734–741 (2002)CrossRefGoogle Scholar
  8. 8.
    Veress, A.I., Phatak, N., Weiss, J.A.: Deformable Image Registration with Hyperelastic Warping. In: Suri, Wilson, Laxminarayan (eds.) Handbook of Biomedical Image Analysis: Registration Models (Part A), vol. 3, Marcel Dekker, Inc, New York (2005)Google Scholar
  9. 9.
    Weiss, J.A, Rabbitt, R.D., Bowden, A.E.: Incorporation of medical image data in finite element models to track strain in soft tissues. SPIE 3254, 477–484 (1998)CrossRefGoogle Scholar
  10. 10.
    Plein, S., et al.: Qualitative and quantitative analysis of regional left ventricular wall dynamics using real-time magnetic resonance imaging: comparison with conventional breath-hold gradient echo acquisition in volunteers and patients. Journal of Magnetic Resonance Imaging 14(1), 23–30 (2001)CrossRefGoogle Scholar
  11. 11.
    Rabbitt, R.D., et al.: Mapping of hyperelastic deformable templates using the finite element method. SPIE 2573, 252–265 (1995)CrossRefGoogle Scholar
  12. 12.
    Veress, A.I., Gullberg, G.T., Weiss, J.A.: Measurement of strain in the left ventricle during diastole with cine-MRI and deformable image registration. J. Biomech. Eng. 127(7), 1195–1207 (2005)CrossRefGoogle Scholar
  13. 13.
    Ellis, B.J., et al.: Medial collateral ligament insertion site and contact forces in the ACL-deficient knee. J. Orthop. Res. 24(4), 800–810 (2006)CrossRefGoogle Scholar
  14. 14.
    Gardiner, J.C., Weiss, J.A.: Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J. Orthop. Res. 21(6), 1098–1106 (2003)CrossRefGoogle Scholar
  15. 15.
    Spencer, A.: Continuum Mechanics. Longman, New York (1980)zbMATHGoogle Scholar
  16. 16.
    Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering 135, 107–128 (1996)zbMATHCrossRefGoogle Scholar
  17. 17.
    Humphrey, J.D., Strumpf, R.K., Yin, F.C.: Determination of a constitutive relation for passive myocardium: II. Parameter estimation. Journal of Biomechanical Engineering 112(3), 340–346 (1990)Google Scholar
  18. 18.
    Veress, A.I., et al.: Normal and pathological NCAT image and phantom data based on physiologically realistic left ventricle finite-element models. IEEE Trans. Med. Imaging 25(12), 1604–1616 (2006)CrossRefGoogle Scholar
  19. 19.
    Maker, B.N., Ferencz, R.M., Hallquist, J.O.: NIKE3D: A nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics. Lawrence Livermore National Laboratory Technical Report, UCRL-MA #105268 (1990)Google Scholar
  20. 20.
    Guccione, J.M., McCulloch, A.D.: Mechanics of active contraction in cardiac muscle: Part I-constitutive relations for fiber stress that describe deactivation. Journal of Biomechanical Engineering 115, 72–81 (1993)Google Scholar
  21. 21.
    Guccione, J.M., McCulloch, A.D.: Mechanics of active contraction in cardiac muscle: Part II-constitutive relations for fiber stress that describe deactivation. Journal of Biomechanical Engineering 115, 82–90 (1993)Google Scholar
  22. 22.
    Osman, N.F., Prince, J.L.: Visualizing myocardial function using HARP MRI. Phys. Med. Biol. 45(6), 1665–1682 (2000)CrossRefGoogle Scholar
  23. 23.
    Tseng, W.Y., et al.: Myocardial fiber shortening in humans: initial results of MR imaging. Radiology 216(1), 128–139 (2000)Google Scholar
  24. 24.
    Clark, N.R., et al.: Circumferential myocardial shortening in the normal human left ventricle. Assessment by magnetic resonance imaging using spatial modulation of magnetization. Circulation 84(1), 67–74 (1991)Google Scholar
  25. 25.
    Takeuchi, M., et al.: Age-related changes in left ventricular twist assessed by two-dimensional speckle-tracking imaging. J. Am. Soc. Echocardiogr. 19(9), 1077–1084 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Nikhil S. Phatak
    • 1
  • Steve A. Maas
    • 1
  • Alexander I. Veress
    • 1
  • Nathan A. Pack
    • 1
  • Edward V. R. Di Bella
    • 1
  • Jeffrey A. Weiss
    • 1
  1. 1.Department of Bioengineering and, Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 

Personalised recommendations