Advertisement

Mathematical Modeling of Electromechanical Function Disturbances and Recovery in Calcium-Overloaded Cardiomyocytes

  • Leonid B. Katsnelson
  • Tatiana Sulman
  • Olga Solovyova
  • Vladimir S. Markhasin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4466)

Abstract

Rhythm disturbances and mechanical function suppression proper to the acute heart failure in the case of cardiomyocyte calcium overload are simulated in a mathematical model of cardiomyocyte electromechanical activity. Particular attention is paid to the overload caused by diminished activity of the Na + - K +  pump. It is shown in the framework of the model that myocardium mechanics may promote arrhythmias in these conditions. In particular, cooperative influence of the attached crossbridges on the calciumtroponin kinetics is shown to contribute to the initiation of spontaneous action potentials. Numerical experiments showed that the recovery of the normal Na + - K +  pump activity during the heart failure attack did not always led to the normal electromechanical function recovery in the failed cardiomyocyte. Alternative approaches were suggested in the model and compared to each other for recovery of the myocardium electrical and mechanical performance in the simulated case of the acute heart failure.

Keywords

Active myocardium mechanics Mechano-electric feedback  Heart rhythm Extrasystole Arrhythmia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kihara, Y., Morgan, J.P.: Intracellular calcium and ventricular fibrillation. Studies in the aequorin-loaded isovolumic ferret heart. Circ. Res. 68.5, 1378–1389 (1991)Google Scholar
  2. 2.
    Lakatta, E.G., Guarnieri, T.: Spontaneous myocardial calcium oscillations: are they linked to ventricular fibrillation? J. Cardiovasc Electrophysiol 4.4, 473–489 (1993)CrossRefGoogle Scholar
  3. 3.
    Noble, D., Varghese, A.: Modelling of sodium-overload arrhythmias and their suppression. Can. J. Cardiol. 14.1, 97–100 (1998)Google Scholar
  4. 4.
    Luo, C.H., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ Res. 74.6, 1097–1113 (1994)Google Scholar
  5. 5.
    Noble, D.: Modeling the heart–from genes to cells to the whole organ. Science 295.5560, 1678–1682 (2002)CrossRefGoogle Scholar
  6. 6.
    Solovyova, O., Vikulova, N., Katsnelson, L.B., Markhasin, V.S., Noble, P.J., Garny, A.F., Kohl, P., Noble, D.: Mechanical interaction of heterogeneous cardiac muscle segments in silico: effects on Ca2+ handling and action potential. International Journal of Bifurcation and Chaos 13.12, 3757–3782 (2003)CrossRefGoogle Scholar
  7. 7.
    Katsnelson, L.B., Solovyova, O., Sulman, T., Konovalov, P., Markhasin, V.S.: Modeling cardiomyocyte mechano-electric coupling in norm and pathology. Biophysics 51.6, 917–926 (2006)CrossRefGoogle Scholar
  8. 8.
    Noble, D., Varghese, A., Kohl, P., Noble, P.: Improved guinea-pig ventricular cell model incorporating a diadic space, IKr and IKs, and length- and tension-dependent processes. Can. J. Cardiol 1, 123–134 (1998)Google Scholar
  9. 9.
    Katsnelson, L.B., Nikitina, L.V., Chemla, D., Solovyova, O., Coirault, C., Lecarpentier, Y., Markhasin, V.S.: Influence of viscosity on myocardium mechanical activity: a mathematical model. J. Theor. Biol. 230.3, 385–405 (2004)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Gordon, A.M., Regnier, M., Homsher, E.: Skeletal and Cardiac Muscle Contractile Activation: Tropomyosin “Rocks and Rolls”. News Physiol. Sci. 16, 49–55 (2001)Google Scholar
  11. 11.
    Katsnelson, L.B., Markhasin, V.S.: Mathematical modeling of relations between the kinetics of free intracellular calcium and mechanical function of myocardium. J. Mol. Cell Cardiol. 28.3, 475–486 (1996)CrossRefGoogle Scholar
  12. 12.
    DiFrancesco, D., Noble, D.: A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos. Trans. R Soc. Lond B Biol. Sci. 307.1133, 353–398 (1985)CrossRefGoogle Scholar
  13. 13.
    Earm, Y.E., Noble, D.: A model of the single atrial cell: relation between calcium current and calcium release. Proc. R Soc. Lond B Biol. Sci. 240.1297, 83–96 (1990)CrossRefGoogle Scholar
  14. 14.
    Hilgemann, D.W., Noble, D.: Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: reconstruction of basic cellular mechanisms. Proc. R Soc. Lond B Biol. Sci. 230.1259, 163–205 (1987)Google Scholar
  15. 15.
    Mulieri, L.A., Alpert, N.R.: Differential effects of BDM on activation and contraction. Biophys. J. 45, 47 (1984)Google Scholar
  16. 16.
    Pastore, J.M., Laurita, K.R., Rosenbaum, D.S.: Importance of spatiotemporal heterogeneity of cellular restitution in mechanism of arrhythmogenic discordant alternans. Heart Rhythm 3.6, 711–719 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Leonid B. Katsnelson
    • 1
  • Tatiana Sulman
    • 1
  • Olga Solovyova
    • 1
  • Vladimir S. Markhasin
    • 1
  1. 1.Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, Pervomayskaya str. 91, Ekaterinburg 620041Russia

Personalised recommendations