Advertisement

Open-Source Environment for Interactive Finite Element Modeling of Optimal ICD Electrode Placement

  • Matthew Jolley
  • Jeroen Stinstra
  • David Weinstein
  • Steve Pieper
  • Raul San Jose Estepar
  • Gordon Kindlmann
  • Rob MacLeod
  • Dana H. Brooks
  • John K. Triedman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4466)

Abstract

Placement of Implantable Cardiac Defibrillator (ICD) leads in children and some adults is challenging due to anatomical factors. As a result, novel ad hoc non-transvenous implant techniques have been employed clinically. We describe an open-source subject-specific, image-based finite element modeling software environment whose long term goal is determining optimal electrode placement in special populations of adults and children Segmented image-based finite element models of two children and one adult were created from CT scans and appropriate tissue conductivities were assigned. The environment incorporates an interactive electrode placement system with a library of clinically-based, user-configurable electrodes. Finite element models are created from the electrode poses within the torsos and the resulting electric fields, current, and voltages computed and visualized.

Keywords

Implantable Cardioverter Defibrillator Electrode Placement Voltage Gradient Implantable Cardiac Defibrillator Defibrillation Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    3D Slicer: Medical Visualization and Processing Environment for Research (2004)Google Scholar
  2. 2.
    SCIRun: A Scientific Computing Problem Solving Environment (2002) Google Scholar
  3. 3.
    Aguel, F., Eason, J.C., Trayanova, N.A., et al.: Impact of Transvenous Lead Position on Active-can ICD Defibrillation: A Computer Simulation Study. PACE 22, 158 (1999)Google Scholar
  4. 4.
    Alcott, G., Hunter, F., Ideker, R.: Principles of defibrillation: Cellular physiology to fields and waveforms. In: Clinical Cardiac Pacing and Defibrillation. 2nd edn. Saunders, Philadelphia (2000)Google Scholar
  5. 5.
    Alexander, M.E., Cecchin, F., Walsh, E.P., et al.: Implications of Implantable Cardioverter Defibrillator Therapy in Congenital Heart Disease and Pediatrics. J. Cardiovasc. Electrophysiol. 15, 72 (2004)CrossRefGoogle Scholar
  6. 6.
    Bar-Cohen, Y., Berul, C.I., Alexander, M.E., et al.: Age, Size, and Lead Factors Alone do Not Predict Venous Obstruction in Children and Young Adults with Transvenous Lead Systems. J. Cardiovasc. Electrophysiol. 17, 754 (2006)CrossRefGoogle Scholar
  7. 7.
    Berul, C.I., Triedman, J.K., Forbess, J., et al.: Minimally Invasive Cardioverter Defibrillator Implantation for Children: An Animal Model and Pediatric Case Report. PACE 24, 1789 (2001)Google Scholar
  8. 8.
    Bokhari, F., Newman, D., Greene, M., et al.: Long-Term Comparison of the Implantable Cardioverter Defibrillator Versus Amiodarone: Eleven-Year Follow-Up of a Subset of Patients in the Canadian Implantable Defibrillator Study (CIDS). Circulation 110, 112 (2004)CrossRefGoogle Scholar
  9. 9.
    Buxton, A.E., Lee, K.L., Fisher, J.D., et al.: A Randomized Study of the Prevention of Sudden Death in Patients with Coronary Artery Disease. Multicenter Unsustained Tachycardia Trial Investigators. The New Eng. J. Med. 341, 1882 (1999)CrossRefGoogle Scholar
  10. 10.
    Cannon, B.C., Friedman, R.A., Fenrich, A.L., et al.: Innovative Techniques for Placement of Implantable Cardioverter-Defibrillator Leads in Patients with Limited Venous Access to the Heart. PACE 29, 181 (2006)Google Scholar
  11. 11.
    de Jongh, A.L., Entcheva, E.G., Replogle, J.A., et al.: Defibrillation Efficacy of Different Electrode Placements in a Human Thorax Model. PACE 22, 152 (1999)Google Scholar
  12. 12.
    Frazier, D.W., Wolf, P.D., Wharton, J.M., et al.: Stimulus-Induced Critical Point. Mechanism for Electrical Initiation of Reentry in Normal Canine Myocardium. J. Clin. Invest. 83, 1039–1052 (1989)CrossRefGoogle Scholar
  13. 13.
    Gold, M.R., Olsovsky, M.R., DeGroot, P.J., et al.: Optimization of Transvenous Coil Position for Active can Defibrillation Thresholds. J. Cardiovasc. Electrophysiol. 11, 25 (2000)CrossRefGoogle Scholar
  14. 14.
    Jorgenson, D.B., Haynor, D.R., Bardy, G.H., et al.: Computational Studies of Transthoracic and Transvenous Defibrillation in a Detailed 3-D Human Thorax Model. IEEE Trans. Biol. Engin. 42, 172 (1995)CrossRefGoogle Scholar
  15. 15.
    Jorgenson, D.B., Schimpf, P.H., Shen, I., et al.: Predicting Cardiothoracic Voltages during High Energy Shocks: Methodology and Comparison of Experimental to Finite Element Model Data. IEEE Trans. Biol. Engin. 42, 559 (1995)CrossRefGoogle Scholar
  16. 16.
    Khairy, P., Landzberg, M.J., Gatzoulis, M.A., et al.: Transvenous Pacing Leads and Systemic Thromboemboli in Patients with Intracardiac Shunts: A Multicenter Study. Circulation 113, 2391–2397 (2006)CrossRefGoogle Scholar
  17. 17.
    Kindlmann, G.: TEEM: Tools to Process and Visualize Scientific Data and Images (2005)Google Scholar
  18. 18.
    Kriebel, T., Ruschewski, W., Paul, T.: Implantation of an “Extracardiac” Internal Cardioverter Defibrillator in a 6-Month-Old Infant. Zeitschrift fur Kardiologie 94, 415 (2005)CrossRefGoogle Scholar
  19. 19.
    Kugler, J.D., Erickson, C.C.: Nontransvenous Implantable Cardioverter Defibrillator Systems: Not just for Small Pediatric Patients. J. Cardiovasc. Electrophysiol. 17, 47 (2006)CrossRefGoogle Scholar
  20. 20.
    Mocanu, D., Kettenbach, J., Sweeney, M.O. et al.: A Comparison of Biventricular and Conventional Transvenous Defibrillation: A Computational Study using Patient Derived Models. PACE 27, 586 (2004)Google Scholar
  21. 21.
    Mocanu, D., Kettenbach, J., Sweeney, M.O., et al.: Patient-Specific Computational Analysis of Transvenous Defibrillation: A Comparison to Clinical Metrics in Humans. Ann. Biomed. Engin. 32, 775 (2004)CrossRefGoogle Scholar
  22. 22.
    Moss, A.J., Hall, W.J., Cannom, D.S., et al.: Improved Survival with an Implanted Defibrillator in Patients with Coronary Disease at High Risk for Ventricular Arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. The New Eng. J. Med. 335, 1933 (1996)CrossRefGoogle Scholar
  23. 23.
    Schreiber, C., Eicken, A.: Nonthoracotomy Cardioverter Defibrillator Implantation in Infants. Resuscitation 69, 350 (2006)CrossRefGoogle Scholar
  24. 24.
    Stephenson, E.A., Batra, A.S., Knilans, T.K., et al.: A Multicenter Experience with Novel Implantable Cardioverter Defibrillator Configurations in the Pediatric and Congenital Heart Disease Population. J. Cardiovasc. Electrophysiol. 17, 41 (2006)CrossRefGoogle Scholar
  25. 25.
    Tang, A.S., Wolf, P.D., Afework, Y., et al.: Three-Dimensional Potential Gradient Fields Generated by Intracardiac Catheter and Cutaneous Patch Electrodes. Circulation 85, 1857–1864 (1992)Google Scholar
  26. 26.
    Zhang, Y., Bajaj, C.: Adaptive and Quality quadrilateral/hexahedral Meshing from Volumetric Data. Computation Methods in Applied Mechanical Engineering 195, 942–960 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Zhou, X., Daubert, J.P., Wolf, P.D., et al.: Epicardial Mapping of Ventricular Defibrillation with Monophasic and Biphasic Shocks in Dogs. Circ. Res. 72, 145–160 (1993)Google Scholar
  28. 28.
    Zipes, D.P., Fischer, J., King, R.M., et al.: Termination of Ventricular Fibrillation in Dogs by Depolarizing a Critical Amount of Myocardium. Am. J. Cardio. 36, 37 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Matthew Jolley
    • 1
  • Jeroen Stinstra
    • 3
  • David Weinstein
    • 3
  • Steve Pieper
    • 2
  • Raul San Jose Estepar
    • 2
  • Gordon Kindlmann
    • 2
  • Rob MacLeod
    • 3
  • Dana H. Brooks
    • 4
  • John K. Triedman
    • 1
  1. 1.Department of Cardiology, Children’s Hospital Boston, Boston, MA 
  2. 2.Surgical Planning Laboratory, Brigham and Women’s Hospital, Boston, MA 
  3. 3.Scientific Computing Institute, University of Utah, Salt Lake City, UT 
  4. 4.Department of Electrical Engineering, Northeastern University, Boston, MA, John K. Triedman, MD, Children’s Hospital Boston, 300 Longwood Ave. Boston, MA 02115 

Personalised recommendations