Advertisement

Numerical Analysis of the Resolution of Surface Electrocardiographic Lead Systems

  • Jesús Requena-Carrión
  • Juho Väisänen
  • José Luis Rojo-Álvarez
  • Jari Hyttinen
  • Felipe Alonso-Atienza
  • Jaakko Malmivuo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4466)

Abstract

Non-invasive electrocardiographic (ECG) techniques for assessing the electrical activity of selected regions within the cardiac muscle can benefit from suitable positioning of surface electrodes. This positioning is usually guided heuristically and complemented by clinical and experimental studies, but there is a lack of general methods to characterize quantitatively the ability of a given electrode configuration to focus on selected regions of the heart. In this study we explore an approach to the characterization of the resolution of surface ECG systems based on the concept of Resolution Mass (RM). By integrating bioelectric signal modeling and numerical methods, we explore, in an application example, the location and size of the RM for a multielectrode ECG system. The concept of RM combined with bioelectric signal modeling and numerical methods constitutes a powerful tool to investigate the resolution properties of surface ECG systems.

Keywords

Resolution Mass Action Potential Duration Resolution Property Lead System Source Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lux, R., Bilbao, M., Pelter, M., Fleischmann, K., Zegre, J., Schindler, D., Drew, B.: Optimal Leads, Estimation, and Continuous Monitoring Improve Detection of Acute MI and Transient Ischemia. J. Electrocardiol. 37, 240–243 (2004)CrossRefGoogle Scholar
  2. 2.
    Trägård, E., Engblom, H., Pahlm, O.: How many ECG leads do we need? Cardiol. Clin. 24, 317–330 (2006)CrossRefGoogle Scholar
  3. 3.
    Kornreich, F., Montague, T.J., Rautaharju, P.M., Block, P., Warren, J.W., Horáček, B.M.: Identification of Best Electrocardiographic Leads for Diagnosing Anterior and Inferior Myocardial Infarction by Statistical Analysis of Body Surface Potential Maps. Am. J. Cardiol. 58, 863–871 (1986)CrossRefGoogle Scholar
  4. 4.
    Kornreich, F., Montague, T.J., Smets, P., Rautaharju, P.M., Kavadias, M.: Knowledge-Based System for Classification of Body Surface Potential Maps. In: Computers in Cardiology pp. 479–482 (1990)Google Scholar
  5. 5.
    Horáček, B.M., Warren, J.W., Penney, C.J., MacLeod, R.S., Title, L.M., Gardner, M.J., Feldman, C.L.: Optimal Electrocardiographic Leads for Detecting Acute Myocardial Ischemia. J. Electrocardiol. 34, 97–111 (2001)CrossRefGoogle Scholar
  6. 6.
    Malmivuo, J., Plonsey, R.: Bioelectromagnetism: Principles and applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York (1995)Google Scholar
  7. 7.
    Alonso Atienza, F., Requena Carrión, J., García Alberola, A., Rojo Álvarez, J.L., Sánchez Muñoz, J.J., Martínez Sánchez, J., Valdés Chávarri, M.: A probabilistic model of cardiac electrical activity based on a cellular automata system. Rev. Esp. Cardiol. 58(1), 41–47 (2005)CrossRefGoogle Scholar
  8. 8.
    Kauppinen, P., Hyttinen, J., Heinonen, T., Malmivuo, J.: Detailed model of the thorax as a volume conductor based on the visible human man data. J. Med. Eng. Technol. 22(3), 126–133 (1998)CrossRefGoogle Scholar
  9. 9.
    MacLeod, R., Kornreich, F., van Oosterom, A., Rautaharju, P., Selverster, R., Wagner, G., Zywietz, C.: Report of the first visualization of the reconstructed electrocardiographic display symposium. J. Electrocardiol. 38, 385–399 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Jesús Requena-Carrión
    • 1
  • Juho Väisänen
    • 2
  • José Luis Rojo-Álvarez
    • 1
  • Jari Hyttinen
    • 2
  • Felipe Alonso-Atienza
    • 1
  • Jaakko Malmivuo
    • 2
  1. 1.Departamento de Teoría de la Sen̈al y Comunicaciones, Universidad Rey Juan Carlos, FuenlabradaSpain
  2. 2.Ragnar Granit Institute, Tampere University of Technology, TampereFinland

Personalised recommendations