Forward and Inverse Solutions of Electrocardiography Problem Using an Adaptive BEM Method

  • Guofa Shou
  • Ling Xia
  • Mingfeng Jiang
  • Feng Liu
  • Stuart Crozier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4466)


The construction of geometry models of heart-torso is critical for solving the forward and inverse problems of magneto- and electro-cardiography (MCG/ECG). Boundary element method (BEM) is a commonly used numerical approach for the solution of these problems and it requires the modeling of interfaces between various tissue regions. In this study, a new BEM (h-adaptive type) has been applied to the ECG forward/inverse problems. Compared with those traditional BEMs, the adaptive BEM can self-adjust the number and size of the boundary element (BE) meshes according to an error indicator, and thus can save a lot of computational time and also improve the accuracy of the forward and inverse solutions. In this paper, the procedure of the adaptive triangular mesh generation is detailed and the algorithm is tested using a concentric sphere model and a realistic heart-torso model. For the realistic torso model, to improve the numerical accuracy, a number of new nodes are added on the basis of initial torso BE meshes, and the corresponding node coordinates are determined using an approach called Parametric Fourier Representation (PFR) of closed polygons. The simulation results show that the adaptive BEM is more accurate and efficient than traditional BEMs and therefore it is a very promising numerical scheme for ECG forward/inverse problems.


h-adaptiveBEM ECG Forward Problem Inverse problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gulrajani, R.M.: The Forward and Inverse problems of Electrocardiography. IEEE. Eng. Med. Bio. 17(122 ), 84–101 (1998)CrossRefGoogle Scholar
  2. 2.
    Dössel, O.: Inverse Problem of Electro- and Magnetocardiography: Review and Recent Progress. Int. J. Bioelectromagnetism 2(2) (2000)Google Scholar
  3. 3.
    Michel, C.M., Murray, M.M., Lantza, G., Gonzaleza, S., Spinellib, L., Peralta, R.G.: EEG source imaging. Clin. Nerophysiol. 115, 2195–2222 (2004)CrossRefGoogle Scholar
  4. 4.
    Seger, M., Fischer, G., Modre, R., Messnarz, B., Hanser, F., Tilg, B.: Lead field computation for the electrocardiographic inverse problem-finite elements versus boundary elements. Comp. Meth. Prog. Biomed. 77(3), 241–252 (2005)CrossRefGoogle Scholar
  5. 5.
    Johnson, C.R.: Computational and numerical methods for bioelectric field problems. Crit. Rev. Biomed. Eng. 25(1), 1–81 (1997)Google Scholar
  6. 6.
    Johnson, C.R.: Adaptive Finite Element and Local Regularization Methods for the Inverse ECG Problem. In: Inverse Problems in Electrocardiology, Advances in Computational Biomedicine, Edited by Peter Johnston, WIT Press vol. 5, pp. 51–88 (2001),
  7. 7.
    Nixon, J.B., Rasser, P.E., Teubner, M.D., Clark, C.R., Bottema, M.J.: Numerical model of electrical potential within the human head. Int. J. Numer. Methods Eng. 56, 2353–2366 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Harrild, D.M., Henriquez, C.S.: A finite volume model of cardiac propagation. Ann. Biomed. Eng. 25(2), 315–334 (1997)CrossRefGoogle Scholar
  9. 9.
    Ghosh, S., Rudy, Y.: Accuracy of quadratic versus linear interpolation in noninvasive electrocardiographic imaging (ECGI). Ann. Biomed. Eng. 33, 1187–1201 (2005)CrossRefGoogle Scholar
  10. 10.
    Akalm-Acar, Z., Gençer, N.G.: An advanced boundary element method (BEM) implementation for the forward problem of electromagnetic source imaging. Phys. Med. Biol. 49, 5011–5028 (2004)CrossRefGoogle Scholar
  11. 11.
    Fischer, G., Tilg, B., Wach, P., Modre, R., Leder, U., Nowak, H.: Application of high-order boundary elements to the electrocardiographic inverse problem. Comput. Meth. Pro. Biomed. 58, 119–131 (1999)CrossRefGoogle Scholar
  12. 12.
    Buist, M., Pullan, A.: Torso Coupling Techniques for the Forward Problem of Electrocardiography. Ann. Biomed. Eng. 30, 1187–1201 (2002)CrossRefGoogle Scholar
  13. 13.
    Ferguson, A.S., Stroink, G.: Factors affecting the accuracy of the boundary element method in the forward problem - I: Calculating surface potentials. IEEE Trans. Biomed. Eng. 44, 1139–1155 (1997)CrossRefGoogle Scholar
  14. 14.
    Fuchs, M., Jörn, K., Wagner, M., Hawes, S., Ebersole, S., Ebersole, J.S.: A standardized boundary element method volume conductor model. Clin. Nerophysiol. 113, 702–712 (2002)CrossRefGoogle Scholar
  15. 15.
    Kita, E., Kamiya, N.: Error estimation and adaptive mesh refinement in boundary element method, an overview. Eng. Anal. Bound. Elem. 25, 479–495 (2001)zbMATHCrossRefGoogle Scholar
  16. 16.
    Bächtold, M., Emmenegger, M., Korvink, J.G., Baltes, H.: An error indicator and automatic adaptive meshing for electrostatic boundary element simulations. IEEE Trans.Computer-Aided Design. 16, 1439–1446 (1997)CrossRefGoogle Scholar
  17. 17.
    Hren, R., Stroink, G.: Application of the surface harmonic expansions for modeling the human torso. IEEE Trans. Biomed. Eng. 42, 521–524 (1995)CrossRefGoogle Scholar
  18. 18.
    Zilkowski, M., Brauer, H.: Methods of mesh generation for biomagnetic problems. IEEE Trans. Magn. 32, 1345–13487 (1996)CrossRefGoogle Scholar
  19. 19.
    Lindholm, D.A.: Automatic triangular Mesh Generation Surfaces of Polyhedra. IEEE Trans. Mag. 6, 2539–2542 (1983)CrossRefGoogle Scholar
  20. 20.
    Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia, 199Google Scholar
  21. 21.
    Shou, G.F., Jiang, M.F., Xia, L., Wei, Q., Liu, F., Crozier, S.: A comparision of different choices for the regularization parameter in inverse electrocardiography problem. IEEE Eng. Med. Biol. Soc. 28th Ann. Int. Conf. 28, 3903–3906 (2006)Google Scholar
  22. 22.
    Xia, L., Huo, M., Wei, Q., Liu, F., Crozier, S.: Electrodynamic Heart Model Construction and ECG Simulation. Methods Inf. Med. 45, 564–573 (2006)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Guofa Shou
    • 1
  • Ling Xia
    • 1
  • Mingfeng Jiang
    • 1
    • 2
  • Feng Liu
    • 3
  • Stuart Crozier
    • 3
  1. 1.Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027P.R. China
  2. 2.The College of Electronics and Informatics, Zhejiang Sci-Tech University, Hangzhou, 310018P.R. China
  3. 3.The School of Information Technology and Electrical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072Australia

Personalised recommendations