Advertisement

Is There Any Place for Magnetocardiographic Imaging in the Era of Robotic Ablation of Cardiac Arrhythmias?

  • Riccardo Fenici
  • Donatella Brisinda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4466)

Abstract

This article reviews major problems and difficulties faced by the authors along more than twenty years of clinical application of magnetocardiography (MCG) as a tool to improve the diagnosis of arrhythmogenic mechanism(s), non-invasively. It is also emphasized that an exhaustive understanding of individual electrophysiology is mandatory before any intervention, which can modify the substrate and complicate the treatment of patients in the case of ablation failure. The reasons for scarce acceptance of MCG, compared with the success of recent methods for invasive three-dimensional electroanatomical imaging (3D-EAI), are discussed to provide suggestions for needed changes in R&D strategy. MCG might be a powerful method for non-invasive 3D-EAI, but appropriate tools for its clinical applicability are still lacking and need to be urgently developed, through serious investments and interdisciplinary cooperation.

Keywords

Magnetocardiography Mapping Ablation Cardiac Arrhythmias 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blomstrom-Lundqvist, C., Scheinman, MM., Aliot, EM., Alpert, JS., Calkins, H., Camm, AJ., et al.: American College of Cardiology; ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias–executive summary. Circulation 108(15), 1871–1909 (2003)CrossRefGoogle Scholar
  2. 2.
    Gepstein, L., Wolf, T., Hayam, G., Ben-Haim, SA.: Accurate linear radiofrequency lesions guided by a Nonfluoroscopic electroanatomical mapping method during atrial fibrillation. Pacing Clin Electrophysiol. 24(24), 1672–1678 (2001)CrossRefGoogle Scholar
  3. 3.
    Wittkampf, FH., Wever, EF., Derksen, R., Ramanna, H., Hauer, RN., de Medina, EO.R.: LocaLisa: new technique for real-time 3-dimensional localization of regular intracardiac electrodes. Circulation 99(10), 1312–1317 (1999)Google Scholar
  4. 4.
    Gurevitz, OT., Glikson, M., Asirvatham, S., Kester, TA., Grice, SK., Munger, TM., et al.: Use of advanced mapping systems to guide ablation in complex cases: experience with noncontact mapping and electroanatomic mapping systems. Pacing Clin Electrophysiol. 28(4), 316–323 (2005)CrossRefGoogle Scholar
  5. 5.
    Faddis, M.N., Chen, J., Osborn, J., Talcott, M., Cain, M.E., Lindsay, B.D.: Magnetic guidance system for cardiac electrophysiology: a prospective trial of safety and efficacy in humans. J. Am. Coll. Cardiol. 42(11), 1952–1958 (2003)CrossRefGoogle Scholar
  6. 6.
    Corrado, D., Basso, C., Leoni, L., Tokajuk, B., Bauce, B., Frigo, G., et al.: Three-dimensional electroanatomic voltage mapping increases accuracy of diagnosing arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation 14,111(23), 3042–3050 (2005)CrossRefGoogle Scholar
  7. 7.
    Ernst, S., Ouyang, F., Linder, C., Hertting, K., Stahl, F., Chun, J. et al.: Initial experience with remote catheter ablation using a novel magnetic navigation system: magnetic remote catheter ablation. Circulation 109(12), 1472–1475 (2004)CrossRefGoogle Scholar
  8. 8.
    Dickfeld, T., Calkins, H., Bradley, D., Solomon, S.: Stereotactic catheter navigation using magnetic resonance image integration in the human heart. Heart Rhythm. 2(4), 413–415 (2005)CrossRefGoogle Scholar
  9. 9.
    Fenici, R., Brisinda, D.: Bridging non-invasive and interventional electroanatomical imaging: role of magnetocardiography. J. Electrocardiol. 40(Suppl 1), 47–52 (2007)CrossRefGoogle Scholar
  10. 10.
    Fenici, R., Brisinda, D., Meloni, AM., Fenici, P.: First 36-channel System for Clinical Magnetocardiography in Unshielded Hospital Laboratory for Cardiac Electrophysiology. Int. J. of Bioelectromagnetism. 1, 80–83 (2003)Google Scholar
  11. 11.
    Fenici, R., Brisinda, D., Nenonen, J., Fenici, P.: Phantom validation of multichannel magnetocardiography source localization. Pacing Clin Electrophysiol. 26(1, Part II), 426–430 (2003)CrossRefGoogle Scholar
  12. 12.
    Veisterä, H., Fenici, R., Lötjönen, J.: Online heart model creation for magnetocardiographic measurements. In: Halgren, E., Ahlfors, S., Hämäläinen, M., Cohen, D. (eds.) Proceedings of the 14th International Conference on Biomagnetism: vol. 415 (2004)Google Scholar
  13. 13.
    Nenonen, J.: Magnetocardiography. In: Clark, J., Braginski, A. (eds.) SQUID, Handbook, Berlin, Whiley-VCH, Chichester (2005)Google Scholar
  14. 14.
    Brisinda, D., Fenici, R.: Non-invasive Classification and Follow-up of WPW patients with unshielded Magnetocardiography and Transesophageal Atrial Pacing. Pacing and Clinical Electrophysiol. 30 [Suppl 1], S151–S155 (2007)Google Scholar
  15. 15.
    Fenici, R., Brisinda, D., Meloni, AM.: Non-invasive electrophysiologic study with amagnetic transesophageal pacing during unshielded multichannel magnetocardiographic mapping. Neurol Clin Neurophysiol 30(14) (2004)Google Scholar
  16. 16.
    Fenici, R., Brisinda, D., Meloni, AM.: Clinical application of magnetocardiography. Expert Rev. Mol. Diagn. 5(3), 291–313 (2005)CrossRefGoogle Scholar
  17. 17.
    Fenici, R., Brisinda, D.: Magnetocardiography provides non-invasive three-dimensional electroanatomical imaging of cardiac electrophysiology. Int. J. Cardiovasc Imaging. 22(3-4), 595–597 (2006)CrossRefGoogle Scholar
  18. 18.
    Fenici, R., Melillo, G.: Magnetocardiography: ventricular arrhythmias. Eur. Heart J. 14(Suppl E), 53–60 (1993)Google Scholar
  19. 19.
    Yamada, S., Tsukada, K., Miyashita, T., Kuga, K., Yamaguchi, I.: Noninvasive, direct visualization of macro-reentrant circuits by using magnetocardiograms: initiation and persistence of atrial flutter. Europace. 5(4), 343–350 (2003)CrossRefGoogle Scholar
  20. 20.
    Nakai, K., Kawazoe, K., Izumoto, H., Tsuboi, J., Oshima, Y., Oka, T. et al.: Construction of a three-dimensional outline of the heart and conduction pathway by means of a 64-channel magnetocardiogram in patients with atrial flutter and fibrillation. Int. J. Cardiovasc Imaging. 21[5], 555–561 (2005)CrossRefGoogle Scholar
  21. 21.
    Fenici, R.R., CNR.: Biomagnetically localizable multipurpose catheter and method for magnetocardiographic guided intracardiac mapping, biopsy and ablation of cardiac arrhythmias. Unites States patent n.5056517, October 15, 1991 (filed July, 24, 1989)Google Scholar
  22. 22.
    Ben-Haim, S.A.: Apparatus and method for treating cardiac arrhythmias. United States Patent n.5, 391,199; February 21, 1995 (filed July 20 1993)Google Scholar
  23. 23.
    Haddad, R.: Un Model Numerique Anthropomorphique et Dynamique du Thorax Respirant et du Cœur Battant. Ph. D. These, CREATIS-CNRS UMR 5220, INSERM U630 – Lyon, France (2007)Google Scholar
  24. 24.
    Nakai, K., Izumoto, H., Kawazoe, K., Tsuboi, J., Fukuhiro, Y., Oka, T., et al.: Three-dimensional recovery time dispersion map by 64-channel magnetocardiography may demonstrate the location of a myocardial injury and heterogeneity of repolarization. Int. J. Cardiovasc Imaging 22[3-4], 573–580 (2006)CrossRefGoogle Scholar
  25. 25.
    Ogata, K., Kandori, A., Miyashita, T., Tsukada, K., Nakatani, S., Shimizu, W. et al.: Visualization of three-dimensional cardiac electrical excitation using standard heart model and anterior and posterior magnetocardiogram. Int. J. Cardiovasc Imaging. 22(3-4), 581–593 (2006)CrossRefGoogle Scholar
  26. 26.
    Berger, T., Fischer, G., Pfeifer, B., Modre, R., Hanser, F., Trieb, T., et al.: Single-beat noninvasive imaging of cardiac electrophysiology of ventricular pre-excitation. J. Am. Coll. Cardiol. 48(10), 2045–2052 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Riccardo Fenici
    • 1
  • Donatella Brisinda
    • 1
  1. 1.Clinical Physiology - Biomagnetism Research Center, Catholic University of Sacred Heart, Largo A. Gemelli 8, 00168 RomeItaly

Personalised recommendations