Advertisement

Relating Discontinuous Cardiac Electrical Activity to Mesoscale Tissue Structures: Detailed Image Based Modeling

  • Mark L. Trew
  • Bruce H. Smaill
  • Andrew J. Pullan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4466)

Abstract

We relate aspects of discontinuous cardiac activation to the mesoscale myocardial structural feature of interlaminae clefts or cleavage planes. Specialized numerical and computational procedures have been developed for modeling cardiac activation which accounts for detailed myocardial geometric structures derived from specific tissue samples. This modeling allows both study and analysis of the effects of cleavage planes and other structural barriers to myocardial current flow. The results show that mesoscale discontinuities significantly affect the formation of virtual electrodes, and can result in discontinuous activation with midwall pacing.

Keywords

Cardiac Tissue Cleavage Plane Virtual Cathode Line Discontinuity Virtual Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kléber, A.G., Rudy, Y.: Basic Mechanisms of Cardiac Impulse Propagation and Associated Arrhythmias. Physiol. Rev. 84, 431–488 (2004)CrossRefGoogle Scholar
  2. 2.
    Spach, M.S., Heidlage, J.F., Barr, R.C., Dolber, P.C.: Cell Size and Communication: Role in Structural and Electrical Development and Remodeling of the Heart. Heart Rhythm. 4, 500–515 (2004)CrossRefGoogle Scholar
  3. 3.
    Spach, M.S., Barr, R.C.: Effects of Cardiac Microstructure on Propagating Electrical Waveforms. Circ. Res. 86, e23–e28 (2000)Google Scholar
  4. 4.
    Sharifov, O.F., Fast, V.G.: Optical Mapping of Transmural Activation Induced by Electrical Shocks in Isolated Left Ventricular Wall Wedge Preparations. J. Cardiovasc Electr. 14(11), 1215–1222 (2003)CrossRefGoogle Scholar
  5. 5.
    Fast, V.G., Rohr, S., Gillis, A.M., Kléber, A.G.: Activation of Cardiac Tissue by Extracellular Electrical Shocks: Formation of “Secondary Sources” at Intercellular Clefts in Monolayers of Cultured Myocytes. Circ. Res. 82, 375–385 (1998)Google Scholar
  6. 6.
    White, J.B., Walcott, G.P., Pollard, A.E., Ideker, R.E.: Myocardial Discontinuities. A Substrate for Producing Virtual Electrodes That Directly Excite the Myocardium by Shocks. Circulation 97, 1738–1745 (1998)Google Scholar
  7. 7.
    Hooks, D.A., Tomlinson, K.A., Marsden, S., LeGrice, I.J, Smaill, B.H., Pullan, A.J., Hunter, P.J.: Cardiac Microstructure: Implications for Electrical Propagation and Defibrillation in the Heart. Circ. Res. 91(4), 331–338 (2002)CrossRefGoogle Scholar
  8. 8.
    Vetter, F.J., Simons, S.B., Mironov, S., Hyatt, C.J., Pertsov, A.M.: Epicardial Fiber Organization in Swine Right Ventricle and Its Impact on Propagation. Circ. Res. 96, 244–251 (2005)CrossRefGoogle Scholar
  9. 9.
    Ellis, W.S., Auslander, D.M., Lesh, M.D.: Fractionated Electrograms From a Computer Model of Heterogeneously Uncoupled Anisotropic Ventricular Myocardium. Circulation 92, 1619–1626 (1995)Google Scholar
  10. 10.
    LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol-Heart C. 269, H571–H582 (1995)Google Scholar
  11. 11.
    Young, A.A., LeGrice, I.J., Young, M.A., Smaill, B.H.: Extended confocal microscopy of myocardial laminae and collagen network. J. Microsc 192(2), 139–150 (1998)CrossRefGoogle Scholar
  12. 12.
    Sands, G.B., Gerneke, D.A., Hooks, D.A, Green, C.R., Smaill, B.H., LeGrice, I.J.: Automated Imaging of Extended Tissue Volumes using Confocal Microscopy. Microsc. Res. Techniq. 67(5), 227–239 (2005)CrossRefGoogle Scholar
  13. 13.
    Scollan, D.F., Holmes, A., Winslow, R.L., Forder, J.: Histological Validation of Myocardial Microstructure Obtained from Diffusion Tensor Magnetic Resonance Imaging. Am. J. Physiol-Heart C. 275, H2308–H2318 (1998)Google Scholar
  14. 14.
    Harrington, K.B., Rodriguez, F., Cheng, A., Langer, F., Ashikaga, H., Daughters, G.T., Criscione, J.C., Ingels, N.B., Miller, D.C.: Direct Measurement of Transmural Laminar Architecture in the Anterolateral Wall of the Ovine Left Ventricle: New Implications for Wall Thickening Mechanics. Am. J. Physiol-Heart C. 288, 1324–1330 (2005)CrossRefGoogle Scholar
  15. 15.
    Trew, M.L., LeGrice, I.J, Smaill, B.H., Pullan, A.J.: A Finite Volume Method for Modeling Discontinuous Electrical Activation in Cardiac Tissue. Ann. Biomed Eng. 33(5), 591–600 (2005)CrossRefGoogle Scholar
  16. 16.
    Sands, G.B., Trew, M.L., Hooks, D.A., LeGrice, I.J., Pullan, A.J., Smaill, B.H.: Constructing a Tissue-Specific Model of Ventricular Microstructure. In: Proc. 26th Ann. Int. Conf. IEEE EMBS, San Francisco, CA, pp. 3589–3592. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  17. 17.
    Street, A.M, Plonsey, R.: Propagation in Cardiac Tissue Adjacent to Connective Tissue: Two-Dimensional Modeling Studies. IEEE T. Bio.-med Eng. 46(1), 19–25 (1999)CrossRefGoogle Scholar
  18. 18.
    Hooks, D.A., Trew, M.L., Smaill, B.H., Pullan, A.J.: Evidence that Intramural Virtual Electrodes Facilitate Successful Defibrillation. Model Based Analysis of Experimental Evidence. J. Cardiovasc Electr. 17(3), 305–311 (2006)CrossRefGoogle Scholar
  19. 19.
    Sharifov, O.F., Fast, V.G.: Role of Intramural Virtual Electrodes in Shock-Induced Activation of Left Ventricle: Optical Measurements from the Intact Epicardial Surface. Heart Rhythm 3(9), 1063–1073 (2006)CrossRefGoogle Scholar
  20. 20.
    Muzikant, A.L., Hsu, E.W., Wolf, P,D., Henriquez, C.S.: Region Specific Modeling of Cardiac Muscle: Comparison of Simulated and Experimental Potentials. Ann. Biomed Eng. 30, 867–883 (2002)CrossRefGoogle Scholar
  21. 21.
    Hunter, P.J., McNaughton, P.A., Noble, D.: Analytical Models of Propagation in Excitable Cells. Prog. Biophys. Mol. Bio. 30(2/3), 99–144 (1975)Google Scholar
  22. 22.
    Skouibine, K.B., Trayanova, N.A., Moore, P.K.: A Numerically Efficient Model for Simulation of Defibrillation in an Active Bidomain Sheet of Myocardium. Math. Biosci. 166, 85–100 (2000)zbMATHCrossRefGoogle Scholar
  23. 23.
    Grill, W.M., Mortimer, J.T.: Electrical Properties of Implant Encapsulation Tissue. Ann. Biomed. Eng. 22, 23–33 (1994)CrossRefGoogle Scholar
  24. 24.
    Roth, B.J.: Electrical Conductivity Values Used with the Bidomain Model of Cardiac Tissue. IEEE T. Bio.-med Eng. 44(4), 326–328 (1997)CrossRefGoogle Scholar
  25. 25.
    Austin, T.M., Trew, M.L., Pullan, A.J.: Solving the Cardiac Bidomain Equations for Discontinuous Conductivities. IEEE T. Bio.-med Eng. 53(7), 1265–1272 (2006)CrossRefGoogle Scholar
  26. 26.
    Punske, B.B., Ni, Q., Lux, R.L., MacLeod, R.S., Ersher, P.R., Dustman, T.J., Alison, M.J., Taccardi, B.: Spatial Methods of Epicardial Activation Time Determination in Normal Hearts. Ann. Biomed Eng. 31, 781–792 (2003)CrossRefGoogle Scholar
  27. 27.
    Trew, M.L., Caldwell, B.J., Sands, G.B., Hooks, D.A., Tai, D.C.S, Austin, T.M., LeGrice, I.J., Pullan, A.J., Smaill, B.H.: Cardiac Electrophysiology and Tissue Structure: Bridging the Scale Gap with a Joint Measurement and Modelling Paradigm. Exp. Physiol. 91(2), 355–370 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Mark L. Trew
    • 1
  • Bruce H. Smaill
    • 1
    • 2
  • Andrew J. Pullan
    • 1
    • 3
  1. 1.Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland 1142New Zealand
  2. 2.Department of Physiology 
  3. 3.Department of Engineering Science 

Personalised recommendations