Can We Trust the Transgenic Mouse? Insights from Computer Simulations

  • Joseph Tranquillo
  • Adhira Sunkara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4466)


Over the past several decades, the mouse has gained prominence in the cardiac electrophysiology literature as the animal model of choice. Using computer models of the mouse and human ECG, this paper is a step toward understanding when the mouse succeeds and fails to mimic functional changes resulting from disease states and drug interactions.


Mouse Heart Brugada Syndrome Physiol Heart Circ Monophasic Action Potential Transient Outward Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tamaddon, H.S., Vaidya, D., Simon, A.M., Paul, D.L., Morley, G.E.: High-resolution optical mapping of the right bundel branch in connexin40 knockout mice reveals slow conduction in the the specialized conduction system. Circ. Res. 87, 929–936 (2000)Google Scholar
  2. 2.
    Brunner, M., Guo, W., Mitchell, G.F., Buckett, P.D., Nerbonne, J.M., Koren, G.: Characterization of mice with combined suppression of I to and I K,slow. Am. J. Physiol Heart Circ. Physiol. 281, H1201–H1209 (2001)Google Scholar
  3. 3.
    Barry, D.M., Xu, H., Schuessler, R.B., Nerbonne, J.M.: Functional knockout of the transient outward current, Long-QT syndrome, and cardiac remodeling in mice. Circ. Res. 83, 560–567 (1998)Google Scholar
  4. 4.
    Salama, G., London, B.: Mouse models of long QT syndrome J Physiol. 578, 43–53 (2007)Google Scholar
  5. 5.
    Drici, M., Arrighi, I., Chouabe, C., Mann, J.R., Lazdunski, M., Romey, G., Barhanin, J.: Involvement of IsK-associated K  +  channel heart rate control of repolarization in a murine engineered model of Jervell and Lange-Nielsen syndrome. Circ. Res. 83, 95–102 (1998)Google Scholar
  6. 6.
    Morley, G.E., Vaidya, D., Samie, F.H., Lo, C., Delmar, M., Jalife, J.: Characterization of conduction in the ventricles of normal and heterozygous Cx43 knockout mice using optical mapping. J. Cardiovasc Electrophysiol. 10, 1361–1375 (1999)CrossRefGoogle Scholar
  7. 7.
    Doevendans, P.A., Daemen, M.J., de Muinck, E.D., Smits, J.F.: Cardiovascular phenotyping in mice. Cardiovasc Res. 39, 34–49 (1998)CrossRefGoogle Scholar
  8. 8.
    Berul, C.I.: Electrophysiological phenotyping in genetically engineered mice. Physiol Genomics 13, 207–216 (2003)Google Scholar
  9. 9.
    Knollmann, B.C., Tranquillo, J., Sirenko, S.G., Henriquez, C., Franz, M.R.: Microelectrode study of the genesis of the monophasic action potential by contact electrode technique. J. Cardiovasc Electrophysiol. 12, 1246–1252 (2002)CrossRefGoogle Scholar
  10. 10.
    Vaidya, D., Morley, G.E., Samie, F.H., Jalife, J.: Reentry and fibrillation in the mouse heart: A challenge to the critical mass hypothesis. Circ. Res. 85, 174–181 (1999)Google Scholar
  11. 11.
    Nerbonne, J.M.: Studying cardiac arrhythmias in the mouse - a reasonable model for probing mechanisms? Trends Cardiovasc Med. 14, 83–93 (2004)CrossRefGoogle Scholar
  12. 12.
    Jiang, Y., Pandya, K., Smithies, O., Hsu, E.W.: Three-dimensional diffusion tensor microscopy of fixed mouse hearts. Magn Reson Med. 53, 1133–1137 (2004)Google Scholar
  13. 13.
    Punske, B.B., Taccardi, B., Steadman, B., Ershler, P.R., England, A., Valencik, M.L., McDonald, J.A., Litwin, S.E.: Effect of fiber orientation on propagation: electrical mapping of genetically altered mouse hearts. J. Electrocardiol. 38( 40-4), 40–44 (2005)CrossRefGoogle Scholar
  14. 14.
    Nygren, A., Clark, R.B., Belke, D.D., Kondo, C., Giles, W.R., Witkowski, F.X.: Voltage-sensitive dye mapping of activation and conduction in adult mouse hearts. Annals of BME 28, 958–967 (2000)Google Scholar
  15. 15.
    Anumonwo, J.M.B., Tallini, Y.N., Vetter, F.J., Jalife, J.: Action potential characteristics and arrhythmogenic properties of the cardiac conduction system of the murine heart. Circ. Res. 89, 329–335 (2001)Google Scholar
  16. 16.
    Sampson, K.J., Henriquez, C.S.: Electrotonic influences on action potential duration dispersion in small hearts: a simulation study. Am. J. Physiol. Heart Circ. Physiol. 289, 350–360 (2005)CrossRefGoogle Scholar
  17. 17.
    Liu, G., Iden, J.B., Kovithavongs, K., Gulamhusein, R., Duff, H.J., Kavanagh, K.M.: In vivo temporal and spatial distribution of depolarization and repolarization and the illusive murine T wave. J. Physiol. 555, 267–279 (2003)CrossRefGoogle Scholar
  18. 18.
    Pandit, S.V., Clark, R.B., Giles, W.R., Demir, S.S.: A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81, 3029–3051 (2001)CrossRefGoogle Scholar
  19. 19.
    ten Tusscher, K.H.W.J., Nobel, D., Nobel, P.J., Panfilov, A.V.: A model for human ventricular tissue. Am. J. Physiol Heart Circ. Physiol. 286, H1573–H1589 (2004)CrossRefGoogle Scholar
  20. 20.
    Harrild, D., Henriquez, C.: A computer model of normal conduction in the human atria. Circ. Res. 87, E25–36 (2000)Google Scholar
  21. 21.
    Gima, K., Rudy, Y.: Ionic current basis of electrocardiographic waveforms: A model study. Circ. Res. 90, 889–896 (2002)CrossRefGoogle Scholar
  22. 22.
    Danik, S., Cabo, C., Chiello, C., Kang, S., Wit, A.L., Coromilas, J.: Correlation of repolarization of ventricular monophasic action potential with ECG in the murine heart. Am. J. Physiol. 283, H372–H381 (2002)Google Scholar
  23. 23.
    Agduhr, E., Stenstrom, N.: The appearance of the electrocardiogram in heart lesions produced by cod liver oil treatment. Acta Paediatr 33, 493–588 (1929)Google Scholar
  24. 24.
    Plonsey, R.: The active fiber in a volume conductor. IEEE Trans. Biomed Eng. 5, 371–381 (1974)CrossRefGoogle Scholar
  25. 25.
    Zhang, Z.S., Tranquillo, J., Neplioueva, V., Bursac, N., Grant, A.O.: Sodium channel kinetic changes that produce Brugada syndrome or progressive cardiac conduction system disease. Am. J. Physiol Heart Circ. Physiol. 292, H399–H407 (2007)CrossRefGoogle Scholar
  26. 26.
    Guo, W., Li, H., London, B., Nerbonne, J.M.: Functional Consequences of elimination of I to,f and I to,s. Circ. Res. 87, 73–79 (2000)Google Scholar
  27. 27.
    Shaw, R.M., Rudy, Y.: Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ. Res. 81, 727–741 (1997)Google Scholar
  28. 28.
    Qu, Z., Weiss, J.N., Garfinkel, A.: Cardiac electrical restitution properties and stability of reentry spiral waves: a simulation study. Am. J. Physiol. 276, H269–283 (1999)Google Scholar
  29. 29.
    Viswanathan, P.C., Rudy, Y.: Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovasc Res. 42, 530–542 (1999)CrossRefGoogle Scholar
  30. 30.
    Babij, P., Askew, R., Nieuwenhuijsen, B., Su, C., Bridal, T.R., Jow, B., Argentieri, T.M., Kulik, J., DeGennaro, L.J., Spinelli, W., Colatsky, T.J.: Inhibition of cardiac delayed rectifier K+ current by overexpression of the Long-QT syndrome HERG G628S mutation in transgenic mice. Circ. Res. 83, 668–678 (1998)Google Scholar
  31. 31.
    Tranquillo, J.V., Hlavacek, J., Henriquez, C.S.: An integrative model of mouse cardiac electrophysiology from cell to torso. Europace 2, 56–70 (2005)CrossRefGoogle Scholar
  32. 32.
    Bondarenko, V.E., Szigeti, G.P., Bett, G.C.L., Kim, S., Rasmusson, R.L.: Computer model of action potential of mouse ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 287, H1378–H1403 (2004)CrossRefGoogle Scholar
  33. 33.
    Iyer, V., Mazhari, R., Winslow, R.: A computational model of the human left-ventricular epicardial myocyte. Biophys. J. 87, 1507–1523 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Joseph Tranquillo
    • 1
  • Adhira Sunkara
    • 1
  1. 1.Bucknell University, Lewisburg PA 17837USA

Personalised recommendations