Simulations of Cardiac Electrophysiological Activities Using a Heart-Torso Model

  • Heye Zhang
  • Linwei Wang
  • Pengcheng Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4466)


Much attention has been drawn to adopt complicated and realistic physiological models for simulating cardiac electrophysiological activities with abundant computing resources for quite a long time. However, to incorporate these physiological meaningful models into the recovery/inverse framework for estimating patient-specific cardiac electrophysiological activities always needs to handle excessive computational loads caused by the complexities of models. Thus, a balance should be found between physiological meaningfulness and computational feasibility for the recovery/inverse framework. In this paper, a novel numerical scheme, combination of meshfree method and BEM (boundary element method), is proposed to simulate intracardiac and extracardiac electrophysiological activities, which is aimed to provide physiological meaningful simulations with feasible computation for our recovery/inverse approaches. In our simulations, intracardiac electrophysiological activities (transmembrane potentials, TMPs) are obtained by solving a modified Fitzhugh-Nagumo (FHN) model using the meshfree method, and then extracardiac electrophysiological activities (body surface potentials, BSPs) are calculated using BEM. Moreover, we demonstrate the ability of our meshfree-BEM framework through favorable results.


Boundary Element Method Move Less Square Right Bundle Branch Block Meshfree Method Natural Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belystchko, T., Krysl, P., Krongauz, Y.: A three-dimensional explicit element-free galerkin method. Int. J. Numer. Meth. Fluids 37, 229–256 (1997)Google Scholar
  2. 2.
    Belystchko, T., Lu, Y.Y., Gu, L.: Element-free galerkin methods. Int. J. Numer. Meth. Eng. 37, 229–256 (1994)CrossRefGoogle Scholar
  3. 3.
    Dolbow, J., Belytschko, T.: Numerical integration of the galerkin weak form in meshfree methods. Comp. Mech. 23, 219–230 (1990)CrossRefGoogle Scholar
  4. 4.
    Dolbow, J., Belytschko, T.: Numerical integration of galerkin weak form in meshfree methods. Comp. Mech. 23, 219–230 (1999)zbMATHCrossRefGoogle Scholar
  5. 5.
    Durrer, D., van Dam, R., Freud, G., Janse, M., Meijler, F., Arzbaecher, R.: Total excitation of the isolated human heart. Circulation 41(6), 899–912 (1970)Google Scholar
  6. 6.
    Lancaster, P., Salkauskas.: Surface generated by moving least squares methods. Math. Comp. 37(155), 141–158 (1982)CrossRefGoogle Scholar
  7. 7.
    Liu, G.R.: Mesh free methods: moving beyond the finite element method. CRC Press, Boca Raton (2003)zbMATHGoogle Scholar
  8. 8.
    Luo, C.H., Rudy, Y.: A dynamic model of the cardiac ventricular action potential - simulations of ionic currents and concentration changes. Circ. Res. 74, 1071–1097 (1994)Google Scholar
  9. 9.
    MacLeod, R.S., Brooks, D.H.: Recent progress in inverse problems in electrocardiology. IEEE EMBS Magazine 17(1), 73–83 (1998)CrossRefGoogle Scholar
  10. 10.
    MacLeod, R.S., Johnson, C.R., Ershler, P.R.: Construction of an inhomogeneous model of the human torso for use in computational electrocardiography. In: EMBS, pp. 688–689 (1991)Google Scholar
  11. 11.
    Mulquiney, P.J., Smith, N.P., Clark, K., Hunter, P.J.: Mathematical modelling of the ischaemic heart. Nonlinear Analysis, 47, 235–244 (2001)zbMATHCrossRefGoogle Scholar
  12. 12.
    Pullan, A.J., Buist, M.L., Cheng, L.K.: Mathematically modelling the electrical activity of the heart: from cell to body surface and back again. World Science Publishing Co. Pte. Ltd, Singapore (2005)Google Scholar
  13. 13.
    Pullan, A.J., Cheng, L.K., Nash, M.P., Bradley, C.P., Paterson, D.J.: Non-invasive electrical imaging of the heart - theory and model development. In: Annals of Biomedical Eng. pp. 817–836 (2001)Google Scholar
  14. 14.
    Rogers, J.M., McCulloch, A.D.: A collation-galerkin finite element model of cardiac action potential propagation. IEEE Trans. BioMed. Eng. 41(8), 743–756 (1994)CrossRefGoogle Scholar
  15. 15.
    Sachse, F.B.: Computational Cardiology: Modeling of Anatomy, Electrophysiology, and Mechanics. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  16. 16.
    Sanchez-Ortiz, G.I., Sermesant, M., Rhode, K.S., Chandrashekara, R., Razavi, R., Hill, D.L.G., Rueckert, D.: Localization of abnormal conduction pathways for tachyarrhythmia treatment using tagged MRI. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 425–433. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Singh, I.V.: Parallel implementation of the EFG method for heat transfer and fluid flow problems. Comp. Mech. 34, 453–463 (2004)zbMATHCrossRefGoogle Scholar
  18. 18.
    Wang, L.W., Zhang, H.Y., Shi, P.C., Liu, H.F.: Imaging of 3d cardiac electrical activity: A model-based recovery framework. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, Springer, Heidelberg (2006)Google Scholar
  19. 19.
    Wang, Y., Rudy, Y.: Application of the method of fundamental solutions to potential-based inverse electrocardiography. Ann. Biomed Eng. 34, 1272–1288 (2006)CrossRefGoogle Scholar
  20. 20.
    Zhang, H.Y., Shi, P.C.: A meshfree method for solving cardiac electrical propagation. In: EMBS, pp. 349–352 (2005)Google Scholar
  21. 21.
    Zhang, H.Y., Wong, K.C.L., Shi, P.C.: Estimation of cardiac electrical propagation from medical image sequence. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 528–535. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Heye Zhang
    • 1
  • Linwei Wang
    • 1
  • Pengcheng Shi
    • 1
    • 2
  1. 1.Department of Electronic and Computer Engineering, Hong Kong University of Science and TechnologyHong Kong
  2. 2.School of Biomedical Engineering, Southern Medical University, GuangzhouChina

Personalised recommendations