Determining Recovery Times from Transmembrane Action Potentials and Unipolar Electrograms in Normal Heart Tissue

  • Piero Colli Franzone
  • Luca F. Pavarino
  • Simone Scacchi
  • Bruno Taccardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4466)


In this study, we quantitatively analyze some frequently used markers of recovery time, derived from the transmembrane action potentials and from unipolar extracellular electrograms. To this end, we performed 3D numerical simulations by using the anisotropic bidomain model of normal cardiac tissue, coupled with the Luo-Rudy phase I membrane model. We show that the extracellular markers considered are very accurate estimates of (and very well correlated with) the transmembrane action potential markers of the repolarization phase, irrespective of T-wave polarity, repolarization sequence, and transmural distribution of intrinsic properties of the cell membrane.


Action Potential Duration Monophasic Action Potential Intracellular Action Potential Transmembrane Action Bidomain Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balay, S., et al.: PETSc Users Manual. ANL TR anl-95/11 - rev. 2.1.5, (2002),
  2. 2.
    Chen, P.-S., et al.: Epicardial activation and repolarization patterns in patients with right ventricular hypertrophy. Circulation 83, 104–118 (1991)Google Scholar
  3. 3.
    Colli Franzone, P., Pavarino, L.F.: A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Mod. Meth. Appl. Sci (M3AS) 14(6), 883–911 (2004)zbMATHCrossRefGoogle Scholar
  4. 4.
    Colli Franzone, P., Pavarino, L.F., Taccardi, B.: Effects of transmural electrical heterogeneities and electrotonic interactions on the dispersion of cardiac repolarization and action potential duration: A simulation study. Math. Biosci. 204(1), 132–165 (2006)zbMATHCrossRefGoogle Scholar
  5. 5.
    Colli Franzone, P., Pennacchio, M., Guerri, L.: Accurate computation of electrograms in the left ventricular wall. Math. Mod. Meth. Appl. Sci (M3AS) 10(4), 507–538 (2000)zbMATHCrossRefGoogle Scholar
  6. 6.
    Coronel, R., et al.: Monophasic action potentials and activation recovery intervals as measures of ventricular action potential duration: Experimental evidence to resolve some controversies. Heart Rhythm 3(9), 1043–1050 (2006)CrossRefGoogle Scholar
  7. 7.
    Franz, M.R.: Monophasic Action Potentials: Bridging Cells to Bedside. Futura Publishing Company, Armonk NY (2000)Google Scholar
  8. 8.
    Gepstein, L., Hayam, G., Ben-Haim, S.A.: Activation-recovery coupling in the normal swine endocardium. Circulation 96(11), 4036–4043 (1997)Google Scholar
  9. 9.
    Luo, C., Rudy, Y.: A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circ. Res. 68, 1501–1526 (1991)Google Scholar
  10. 10.
    Haws, C.W., Lux, R.L.: Correlation between in vivo transmembrane action potential durations and activation–recovery intervals from electrograms. Circulation 81, 281–288 (1990)Google Scholar
  11. 11.
    Poelzing, S., Rosenbaum, D.S.: Heterogeneous connexin43 expression produces electrophysiological heterogeneities across ventricular wall. Am. J. Physiol (Heart Circ. Physiol) 286, H2001–H2009 (2004)CrossRefGoogle Scholar
  12. 12.
    Punske, B.B., et al.: Spatial methods of epicardial activation time determination in normal hearts. Ann. Biomed. Engrg. 31(7), 781–792 (2003)CrossRefGoogle Scholar
  13. 13.
    Spach, M.S., et al.: Extracellular potentials related to intracellular action potentials in the dog Purkinje system. Circ. Res. 30, 505–519 (1972)Google Scholar
  14. 14.
    Spach, M.S., Dolber, P.C.: Relating extracellular potentials and their derivatives to anisotropic propagation at microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ. Res. 58, 356–371 (1986)Google Scholar
  15. 15.
    Steinhaus, B.M.: Estimating cardiac transmembrane activation and recovery times from unipolar and bipolar extracellular electrograms: a simulation study. Circ. Res. 64(3), 449–462 (1989)Google Scholar
  16. 16.
    Viswanathan, P.C., et al.: Effects of I Kr and I Ks heterogeneity on action potential duration and its rate dependence. Circulation 99, 2466–2474 (1999)Google Scholar
  17. 17.
    Wyatt, R.P.: Comparison of estimates of activation and recovery times from bipolar and unipolar electrograms to in vivo transmembrane action potential durations. In: Proc. IEEE/Eng. Med. Biol. Soc. 2nd Ann. Conf. Washington, DC, pp. 22–25 (1980)Google Scholar
  18. 18.
    Yan, G.X., et al.: Characteristics and distribution of M cells in arterially perfused canine left ventricular wedge preparations. Circulation 98, 1921–1927 (1998)Google Scholar
  19. 19.
    Yue, A.M., et al.: Determination of human ventricular repolarization by noncontact mapping. Validation with monophasic action potential recordings. Circulation 110, 1343–1350 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Piero Colli Franzone
    • 1
  • Luca F. Pavarino
    • 2
  • Simone Scacchi
    • 1
  • Bruno Taccardi
    • 3
  1. 1.Dipartimento di Matematica, Universitá di Pavia and IMATI-CNR, Via Ferrata 1, 27100 PaviaItaly
  2. 2.Dipartimento di Matematica, Universitá di Milano, Via Saldini 50, 20133 MilanoItaly
  3. 3.Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 

Personalised recommendations