The Construction of Bounded Irregular Pyramids with a Union-Find Decimation Process

  • R. Marfil
  • L. Molina-Tanco
  • A. Bandera
  • F. Sandoval
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4538)


The Bounded Irregular Pyramid (BIP) is a mixture of regular and irregular pyramids whose goal is to combine their advantages. Thus, its data structure combines a regular decimation process with a union-find strategy to build the successive levels of the structure. The irregular part of the BIP allows to solve the main problems of regular structures: their inability to preserve connectivity or to represent elongated objects. On the other hand, the BIP is computationally efficient because its height is constrained by its regular part. In this paper the features of the Bounded Irregular Pyramid are discussed, presenting a comparison with the main pyramids present in the literature when applied to a colour segmentation task.


Regular Part Virtual Node Irregular Structure Regular Node Parent Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brun, L., Kropatsch, W.: Construction of Combinatorial Pyramids. In: Hancock, E., Vento, M. (eds.) GbR in Pattern Recognition, pp. 1–12. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Burt, P., Hong, T., Rosenfeld, A.: Segmentation and estimation of image region properties through cooperative hierarchical computation. IEEE Trans. on Systems, Man And Cybernetics 11(12), 802–809 (1981)CrossRefGoogle Scholar
  3. 3.
    Hong, T., Rosenfeld, A.: Compact region extraction using weighted pixel linking in a pyramid. IEEE Trans. on Pattern Anal. Machine Intell. 6(2), 222–229 (1984)CrossRefGoogle Scholar
  4. 4.
    Marfil, R., Molina-Tanco, L., Bandera, A., Rodriguez, J., Sandoval, F.: Pyramid segmentation algorithms revisited. Pattern Recognition 39(8), 1430–1451 (2006)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bertolino, P., Montanvert, A.: Multiresolution segmentation using the irregular pyramid. Int. Conf. On Image Processing 1, 257–260 (1996)Google Scholar
  6. 6.
    Haxhimusa, Y., Kropatsch, W.: Segmentation graph hierarchies. In: Proceedings of the Joint IAPR International Workshop on Syntactical and Structural Pattern Recognition and Statistical Pattern Recognition, pp. 343–351 (2004)Google Scholar
  7. 7.
    Lallich, S., Muhlenbach, F., Jolion, J.: A test to control a region growing process within a hierarchical graph. Pattern Recognition 36, 2201–2211 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Huart, J., Bertolino, P.: Similarity-based and perception-based image segmentation. IEEE. Int. Conf. on Image Processing - ICIP 2005 3, 1148–1151 (2005)Google Scholar
  9. 9.
    Marfil, R., Rodriguez, J., Bandera, A., Sandoval, F.: Bounded irregular pyramid: a new structure for colour image segmentation. Pattern Recognition 37(3), 623–626 (2004)CrossRefGoogle Scholar
  10. 10.
    Tarjan, R.: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22, 215–225 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Borsotti, M., Campadelli, P., Schettini, R.: Quantitative evaluation of color image segmentation results. Pattern Recognition Letters 19, 741–747 (1998)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • R. Marfil
    • 1
  • L. Molina-Tanco
    • 1
  • A. Bandera
    • 1
  • F. Sandoval
    • 1
  1. 1.Grupo ISIS, Dpto. Tecnología Electrónica, E.T.S.I. Telecomunicación, Universidad de Málaga, Campus de Teatinos s/n 29071-MálagaSpain

Personalised recommendations