Scalable Processing of Context Information with COSMOS

  • Denis Conan
  • Romain Rouvoy
  • Lionel Seinturier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4531)


Ubiquitous computing environments are characterised by a high number of heterogeneous devices that generate a huge amount of context data. These data are used to adapt applications to changing execution contexts. However, legacy frameworks fail to process context information in a scalable and efficient manner. In this paper, we propose to organise the classical functionalities of a context manager to introduce a 3-steps cycle of data collection, interpretation, and situation identification. We propose the COSMOS framework, which is based on the concepts of context node and context management policies translated into software components in software architecture. This paper presents COSMOS and evaluates its efficiency throughout the example of the composition of context information to implement a caching/off-loading adaptation situation.


Mobile computing context architecture component 


  1. 1.
    Bidinger, P., Leclercq, M., Quéma, V., Schmitt, A., Stefani, J.-B.: Dream Types: A Domain Specific Type System for Component-Based Message-Oriented Middleware. In: 4th ESEC/FSE Workshop on Specification and Verification of Component-Based Systems, Lisbon Portugal (September 2005)Google Scholar
  2. 2.
    Boutros Saab, C., Bonnaire, X., Folliot, B.: PHOENIX: A Self Adaptable Monitoring Platform for Cluster Management. Cluster Computing 5(1), 75–85 (2002)CrossRefGoogle Scholar
  3. 3.
    Bruneton, É., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The Fractal Component Model and Its Support in Java. Software—Practice and Experience, special issue on Experiences with Auto-adaptive and Reconfigurable Systems 36(11), 1257–1284 (2006)Google Scholar
  4. 4.
    Cecchet, E., Elmeleegy, H., Layaïda, O., Quéma, V.: Implementing Probes for J2EE Cluster Monitoring. Studia Informatica 4(1), 31–40 (2005)Google Scholar
  5. 5.
    Courtrai, L., Guidec, F., Le Sommer, N., Mahéo, Y.: Resource Management for Parallel Adaptive Components. In: IEEE IPDPS Workshop on Java for Parallel and Distributed Computing, pp. 134–141, Nice, France (April 2003)Google Scholar
  6. 6.
    Coutaz, J., Crowley, J., Dobson, S., Garlan, D.: The disappearing computer: Context is Key. Communications of the ACM 48(3), 49–53 (2005)CrossRefGoogle Scholar
  7. 7.
    Coutaz, J., Rey, G.: Foundations for a Theory of Contextors. In: 4th International Conference on Computer-Aided Design of User Interfaces, pp. 13–34. Kluwer Academic Publishers, Dordrecht (2002)CrossRefGoogle Scholar
  8. 8.
    da Rocha, R., Endler, M.: Context Management in Heterogeneous, Evolving Ubiquitous Envrionments. IEEE Distributed Systems Online, vol. 7(4) (April 2006)Google Scholar
  9. 9.
    David, P., Ledoux, T.: WildCAT: a generic framework for context-aware applications. In: 3rd International Workshop on Middleware for Pervasive and Ad-hoc Computing, pp. 1–7, Grenoble, France (November 2005)Google Scholar
  10. 10.
    Dey, A., Salber, D., Abowd, G.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Special issue on context-aware computing in the Human-Computer Interaction Journal 16(2–4), 97–166 (2001)Google Scholar
  11. 11.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, London (1994)MATHGoogle Scholar
  12. 12.
    Henricksen, K., Indulska, J., McFadden, T., Balasubramaniam, S.: Middleware for Distributed Context-Aware Systems. In: 7th International Symposium on Distributed Objects and Applications, Agia Napa (Cyprus). LNCS, Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Leclercq, M., Quéma, V., Stefani, J.-B.: DREAM: a Component Framework for the Construction of Resource-Aware, Configurable MOMs. IEEE Distributed Systems Online, vol. 6(9) (September 2005)Google Scholar
  14. 14.
    Preuveneers, D., Berbers, Y.: Adaptive context management using a component-based approach. In: 5th IFIP WG 6.1 International Conference on Distributed Applications and Interoperable Systems, Athens (Greece), vol. 3543, pp. 14–26. Springer-Verlag, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Schroeder, B.: On-Line Monitoring: A Turorial IEEE Computer, pp. 72–78 (June 1995)Google Scholar
  16. 16.
    Senart, A., Cunningham, R., Bouroche, M., O’Connor, N., Reynolds, V., Cahill, V.: MoCoA: Customisable Middleware for Context-Aware Mobile Applications. In: 8th International Symposium on Distributed Objects and Applications. LNCS, vol. 4275, pp. 1722–1738. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    Yau, S., Karim, F., Wang, Y., Wang, B., Gupta, S.: Reconfigurable Context-Sensitive Middleware for Pervasive Computing. IEEE Pervasive Computing 1(3), 33–40 (2002)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2007

Authors and Affiliations

  • Denis Conan
    • 1
  • Romain Rouvoy
    • 2
  • Lionel Seinturier
    • 3
  1. 1.GET/INT, CNRS Samovar, 9 rue Charles Fourier, 91011 ÉvryFrance
  2. 2.University of Oslo, Department of Informatics, P.O.Box 1080 Blindern, 0316 OsloNorway
  3. 3.INRIA-Futurs, Projet Jacquard/LIFL, Université des Sciences et Technologies de Lille (USTL), 59655 Villeneuve d’AscqFrance

Personalised recommendations