Evolutionary Search for the Artistic Rendering of Photographs

  • John P. Collomosse
Part of the Natural Computing Series book series (NCS)

Summary

This chapter explores algorithms for the artistic stylization (transformation) of photographs into digital artwork, complementing techniques discussed so far in this book that focus on image generation. Most artistic stylization algorithms operate by placing atomic rendering primitives “strokes” on a virtual canvas, guided by automated artistic heuristics. In many cases the stroke placement process can be phrased as an optimization problem, demanding guided exploration of a high dimensional and turbulent search space to produce aesthetically pleasing renderings. Evolutionary search algorithms can offer attractive solutions to such problems.

This chapter begins with a brief review of artistic stylization algorithms, in particular algorithms for producing painterly renderings from two-dimensional sources. It then discusses how genetic algorithms may be harnessed both to increase control over level of detail when painting (so improving aesthetics) and to enhance usability of parameterized painterly rendering algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Salisbury, M.P., Anderson, S.E., Barzel, R., Salesin, D.H. (1994). Interactive pen-and-ink illustration. In: Proc. ACM SIGGRAPH. Florida, USA, 101–108Google Scholar
  2. 2.
    Salisbury, M.P., Wong, M.T., Hughes, J.F., Salesin, D.H. (1997). Orientable textures for image-based pen-and-ink illustration. In: Proc. ACM SIGGRAPH. Los Angeles, USA, 401–406Google Scholar
  3. 3.
    Litwinowicz, P. (1997). Processing images and video for an impressionist effect. In: Proc. ACM SIGGRAPH. Los Angeles, USA, 407–414Google Scholar
  4. 4.
    Hertzmann, A. (1998). Painterly rendering with curved brush strokes of multiple sizes. In: Proc. ACM SIGGRAPH, 453–460Google Scholar
  5. 5.
    Haeberli, P. (1990). Paint by numbers: Abstract image representations. In: Proc. ACM SIGGRAPH. Vol. 4, 207–214, Figs. 1 and 4. http://doi.acm.org/10.1145/97879.97902Google Scholar
  6. 6.
    Haggerty, M. (1991). Almost automatic computer painting. IEEE Computer Graphics and Applications, 11(6): 11–12Google Scholar
  7. 7.
    Treavett, S., Chen, M. (1997). Statistical techniques for the automated synthesis of non-photorealistic images. In: Proc. Eurographics UK, 201–210Google Scholar
  8. 8.
    Shiraishi, M., Yamaguchi, Y. (2000). An algorithm for automatic painterly rendering based on local source image approximation. In: Proc. ACM NPAR Google Scholar
  9. 9.
    Curtis, C., Anderson, S., Seims, J., Fleischer, K., Salesin, D.H. (1997). Computer-generated watercolor. In: Proc. ACM SIGGRAPH, 421–430Google Scholar
  10. 10.
    Hertzmann, A., Jacobs, C., Oliver, N., Curless, B., Salesin, D.H. (2001). Image analogies. In: Proc. ACM SIGRGAPH, 327–340Google Scholar
  11. 11.
    Hertzmann, A. (2001). Paint by relaxation. In: Proc. Computer Graphics Intl. (CGI), 47–54Google Scholar
  12. 12.
    Collomosse, J.P., Hall, P.M. (2005). Genetic paint: A search for salient paintings. In: Applications of Evolutionary Computing, EvoWorkshops 2004. Vol. 3449 of LNCS, 437–447Google Scholar
  13. 13.
    Gooch, B., Coombe, G., Shirley, P. (2002). Artistic vision: Painterly rendering using computer vision techniques. In: Proc. ACM NPAR, 83–90Google Scholar
  14. 14.
    DeCarlo, D., Santella, A. (2002). Abstracted painterly renderings using eye-tracking data. In: Proc. ACM SIGGRAPH, 769–776Google Scholar
  15. 15.
    Meier, B. (1996). Painterly rendering for animation. In: Proc. ACM SIGGRAPH, 447–484Google Scholar
  16. 16.
    Hertzmann, A., Perlin, K. (2000). Painterly rendering for video and interaction. In: Proc. ACM NPAR, 7–12Google Scholar
  17. 17.
    Wang, J., Xu, Y., Shum, H.Y., Cohen, M. (2004). Video tooning. In: Proc. ACM SIGGRAPH, 574–583Google Scholar
  18. 18.
    Collomosse, J.P., Rowntree, D., Hall, P.M. (2005). Stroke surfaces: Temporally coherent non-photorealistic animations from video. IEEE Trans. Visualization and Comp. Graphics, 11(5): 540–549CrossRefGoogle Scholar
  19. 19.
    Kass, M., Witkin, A., Terzopoulos, D. (1987). Active contour models. Intl. Journal of Computer Vision (IJCV), 1(4): 321–331CrossRefGoogle Scholar
  20. 20.
    Gombrich, E.H. (1960). Art and Illusion. Phaidon Press Ltd.. OxfordGoogle Scholar
  21. 21.
    Collomosse, J.P., Hall, P.M. (2002). Painterly rendering using image salience. In: Proc. Eurographics UK, 122–128Google Scholar
  22. 22.
    Holland, J. (1975). Adaptation in Natural and Artificial Systems. An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University Michigan PressGoogle Scholar
  23. 23.
    de Jong, K. (1988). Learning with genetic algorithms. Machine Learning, 3: 121–138CrossRefGoogle Scholar
  24. 24.
    Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley. Reading, MA ISBN: 0-201-15767-5.Google Scholar
  25. 25.
    Hall, P.M., Owen, M., Collomosse, J.P. (2004). A trainable low-level feature detector. In: Proc. Intl. Conf. on Pattern Recognition (ICPR). Vol. 1, 708–711CrossRefGoogle Scholar
  26. 26.
    Walker, K.N., Cootes, T.F., Taylor, C.J. (1998). Locating salient object features. In: Proc. British Machine Vision Conf. (BMVC). Vol. 2, 557–567Google Scholar
  27. 27.
    Agarwala, A. (2002). Snaketoonz: A semi-automatic approach to creating cel animation from video. In: Proc. ACM NPAR, 139–147Google Scholar
  28. 28.
    Collomosse, J.P. (2006). Supervised genetic search for parameter selection in painterly rendering. In: Applications of Evolutionary Computing, EvoWorkshops 2006. Vol. 3907, 599–610CrossRefGoogle Scholar
  29. 29.
    Christoudias, C., Georgescu, B., Meer, P. (2002). Synergism in low level vision. In: Intl. Conf. on Pattern Recog. (ICPR). Vol. 4, 150–155Google Scholar
  30. 30.
    Hertzmann, A. (2002). Fast paint texture. In: Proc. ACM NPAR, 91–96Google Scholar
  31. 31.
    Russell, J.A. (1997). Reading emotion from and into faces: Rsurrecting a dimensional-contextual perspective. In Russel, J.A., Fernández-Dols, J.M., eds.: The Psychology of Facial Expression. Cambridge University Press, 295–320Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • John P. Collomosse
    • 1
  1. 1.Department of Computer ScienceUniversity of BathBathU.K.

Personalised recommendations