Advertisement

Experiments in Computational Aesthetics

An Iterative Approach to Stylistic Change in Evolutionary Art
  • Penousal Machado
  • Juan Romero
  • Bill Manaris
Part of the Natural Computing Series book series (NCS)

Summary

A novel approach to the production of evolutionary art is presented. This approach is based on the promotion of an arms race between an adaptive classifier and an evolutionary computation system. An artificial neural network is trained to discriminate among images previously created by the evolutionary engine and famous paintings. Once training is over, evolutionary computation is used to generate images that the neural network classifies as paintings. The images created throughout the evolutionary run are added to the training set and the process is repeated. This iterative process leads to the refinement of the classifier and forces the evolutionary algorithm to explore new paths. The experimental results attained across iterations are presented and analyzed. Validation tests were conducted in order to assess the changes induced by the refinement of the classifier and to identify the types of images that are difficult to classify. Taken as a whole, the experimental results show the soundness and potential of the proposed approach.

Keywords

Root Mean Square Error Fractal Dimension Average Root Mean Square Error Internal Image Genetic Programming System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Machado, P., Cardoso, A. (1997). Model proposal for a constructed artist. In Callaos, N., Khoong, C., Cohen, E., eds.: First World Multiconference on Systemics, Cybernetics and Informatics, SCI97/ISAS97. Caracas, Venezuela, 521–528Google Scholar
  2. 2.
    Romero, J. (2002). Metodología Evolutiva para la Construcción de Modelos Cognitivos Complejos. Exploración de la Creatividad Artificial en Composición Musical. PhD thesis. University of Corunha. Corunha, Spain (in Spanish)Google Scholar
  3. 3.
    Romero, J., Machado, P., Santos, A., Cardoso, A. (2003). On the development of critics in evolutionary computation artists. In Günther, R., et al., eds.: Applications of Evolutionary Computing, EvoWorkshops 2003: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC. Vol. 2611 of LNCS. Essex, UK. SpringerGoogle Scholar
  4. 4.
    Manaris, B., Purewal, T., McCormick, C. (2002). Progress towards recognizing and classifying beautiful music with computers — MIDI-encoded music and the Zipf–Mandelbrot law. In: Proceedings of the IEEE SoutheastCon. Columbia, SCGoogle Scholar
  5. 5.
    Manaris, B., Romero, J., Machado, P., Krehbiel, D., Hirzel, T., Pharr, W., Davis, R. (2005). Zipf’s law, music classification and aesthetics. Computer Music Journal, 29(1): 55–69CrossRefGoogle Scholar
  6. 6.
    Manaris, B., Roos, P., Machado, P., Krehbiel, D., Pellicoro, L., Romero, J. (2007). A corpus-based hybrid approach to music analysis and composition. In: Proceedings of the 22nd Conference on Artificial Intelligence (AAAI 07). Vancouver, BCGoogle Scholar
  7. 7.
    Machado, P., Romero, J., Santos, A., Cardoso, A., Manaris, B. (2004). Adaptive critics for evolutionary artists. In Günther, R., et al., eds.: Applications of Evolutionary Computing, EvoWorkshops 2004: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC. Vol. 3005 of LNCS. Coimbra, Portugal. Springer, 435–444Google Scholar
  8. 8.
    Machado, P., Romero, J., Cardoso, A., Santos, A. (2005). Partially interactive evolutionary artists. New Generation Computing – Special Issue on Interactive Evolutionary Computation, 23(42): 143–155Google Scholar
  9. 9.
    Machado, P. (2007). Inteligência Artificial e Arte. PhD thesis. University of Coimbra. Coimbra, Portugal (in Portuguese)Google Scholar
  10. 10.
    Machado, P., Cardoso, A. (1998). Computing aesthetics. In Oliveira, F., ed.: Proceedings of the XIVth Brazilian Symposium on Artificial Intelligence: Advances in Artificial Intelligence. Vol. 1515 of LNCS. Porto Alegre, Brazil. Springer, 219–229Google Scholar
  11. 11.
    Taylor, R.P., Micolich, A.P., Jonas, D. (1999). Fractal analysis of Pollock’s drip paintings. Nature, 399: 422CrossRefGoogle Scholar
  12. 12.
    Saunders, R. (2001). Curious Design Agents and Artificial Creativity — A Synthetic Approach to the Study of Creative Behaviour. PhD thesis. University of Sydney, Department of Architectural and Design Science Faculty of Architecture. Sydney, AustraliaGoogle Scholar
  13. 13.
    Manaris, B.Z., Vaughan, D., Wagner, C., Romero, J., Davis, R.B. (2003). Evolutionary music and the Zipf–Mandelbrot law: Developing fitness functions for pleasant music. In Günther, R., et al., eds.: Applications of Evolutionary Computing, EvoWorkshop 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoSTIM. Vol. 2611 of LNCS. Springer, 522–534Google Scholar
  14. 14.
    Machado, P., Romero, J., Manaris, B., Santos, A., Cardoso, A. (2003). Power to the critics — A framework for the development of artificial art critics. In: IJCAI 2003 Workshop on Creative Systems. Acapulco, MexicoGoogle Scholar
  15. 15.
    Manaris, B., Machado, P., McCauley, C., Romero, J., Krehbiel, D. (2005). Developing fitness functions for pleasant music: Zipf’s law and interactive evolution systems. In Rothlauf, F., et al., eds.: Applications of Evolutionary Computing, EvoWorkshops 2005: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC. Vol. 3449 of LNCS. Lausanne, Switzerland. Springer, 498–507Google Scholar
  16. 16.
    Sims, K. (1991). Artificial evolution for computer graphics. ACM Computer Graphics, 25: 319–328CrossRefGoogle Scholar
  17. 17.
    Machado, P., Cardoso, A. (2002). All the truth about NEvAr. Applied Intelligence, Special Issue on Creative Systems, 16(2): 101–119zbMATHGoogle Scholar
  18. 18.
    Greenfield, G. (2002). Color dependent computational aesthetics for evolving expressions. In Sarhangi, R., ed.: Bridges: Mathematical Connections in Art, Music, and Science; Conference Proceedings 2002. Winfield, Kansas. Central Plains Book Manufacturing, 9–16Google Scholar
  19. 19.
    Greenfield, G. (2003). Evolving aesthetic images using multiobjective optimization. In McKay, B., et al., eds.: Congress on Evolutionary Computation, CEC 2003. Vol. 3. Canberra, Australia. IEEE Press, 1903–1909Google Scholar
  20. 20.
    Svangård, N., Nordin, P. (2004). Automated aesthetic selection of evolutionary art by distance based classification of genomes and phenomes using the universal similarity metric. In Günther, R., et al., eds.: Applications of Evolutionary Computing, EvoWorkshops 2004: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC. Vol. 3005 of LNCS. Coimbra, Portugal. Springer, 445–454Google Scholar
  21. 21.
    Baluja, S., Pomerlau, D., Todd, J. (1994). Towards automated artificial evolution for computer-generated images. Connection Science, 6(2): 325–354CrossRefGoogle Scholar
  22. 22.
    Greenfield, G.R. (2002). On the co-evolution of evolving expressions. International Journal of Computational Intelligence and Applications, 2(1): 17–31CrossRefGoogle Scholar
  23. 23.
    Todd, P.M., Werner, G.M. (1999). Frankensteinian approaches to evolutionary music composition. In Griffith, N., Todd, P.M., eds.: Musical Networks: Parallel Distributed Perception and Performance. MIT Press, 313–340Google Scholar
  24. 24.
    Birkhoff, G. (1933). Aesthetic Measure. Harvard University PressGoogle Scholar
  25. 25.
    Moles, A. (1958). Théorie de L’Information et Perception Esthétique. DenoelGoogle Scholar
  26. 26.
    Arnheim, R. (1956). Art and Visual Perception, a Psychology of the Creative Eye. Faber and Faber. LondonGoogle Scholar
  27. 27.
    Arnheim, R. (1966). Towards a Psychology of Art/Entropy and Art — An Essay on Disorder and Order. The Regents of the University of CaliforniaGoogle Scholar
  28. 28.
    Arnheim, R. (1969). Visual Thinking. University of California Press. Berkeley, CAGoogle Scholar
  29. 29.
    Bense, M. (1965). Aesthetica. Einführung in die neue Aesthetik. Agis (reprinted by Baden-Baden, 1982)Google Scholar
  30. 30.
    Shannon, C.E. (1951). Prediction and entropy of printed english. Bell System Technical Journal, (30): 50–64Google Scholar
  31. 31.
    Staudek, T. (2002). Exact Aesthetics. Object and Scene to Message. PhD thesis. Faculty of Informatics, Masaryk University of BrnoGoogle Scholar
  32. 32.
    Staudek, T., Linkov, V. (2004). Personality characteristics and aesthetic preference for chaotic curves. Journal of Mathematics and Design, 4(1): 297–304Google Scholar
  33. 33.
    Graves, M. (1948). Design Judgement Test. The Psychological Corporation. New YorkGoogle Scholar
  34. 34.
    Datta, R., Joshi, D., Li, J., Wang, J.Z. (2006). Studying aesthetics in photographic images using a computational approach. In: Computer Vision – ECCV 2006, 9th European Conference on Computer Vision, Part III. LNCS. Graz, Austria. Springer, 288–301Google Scholar
  35. 35.
    Aks, D., Sprott, J.C. (1996). Quantifying aesthetic preference for chaotic patterns. Empirical Studies of the Arts, 14: 1–16Google Scholar
  36. 36.
    Spehar, B., Clifford, C.W.G., Newell, N., Taylor, R.P. (2003). Universal aesthetic of fractals. Computers and Graphics, 27(5): 813–820CrossRefGoogle Scholar
  37. 37.
    Wannarumon, S., Bohez, E.L.J. (2006). A new aesthetic evolutionary approach for jewelry design. Computer-Aided Design & Applications, 3(1-4): 385–394Google Scholar
  38. 38.
    Wertheimer, M. (1939). Laws of organization in perceptual forms. In Ellis, W.D., ed.: A Source Book of Gestalt Psychology. Harcourt Brace. New York, 71–88Google Scholar
  39. 39.
    Tyler, C.W., ed. (2002). Human Symmetry Perception and Its Computational Analysis. Lawrence Erlbaum AssociatesGoogle Scholar
  40. 40.
    Field, D.J., Hayes, A., Hess, R.F. (2000). The roles of polarity and symmetry in the perceptual grouping of contour fragments. Spatial Vision, 13(1): 51–66CrossRefGoogle Scholar
  41. 41.
    Cope, D. (1992). On the algorithmic representation of musical style. In Laske, O., ed.: Understanding Music with AI: Perspectives on Music Cognition. MIT Press. Cambridge, Massachusetts, 354–363Google Scholar
  42. 42.
    Zipf, G.K. (1949). Human Behaviour and the Principle of Least Effort: An Introduction to Human Ecology. Addison-WesleyGoogle Scholar
  43. 43.
    Kittler, J. (1983). On the accuracy of the Sobel edge detector. Image Vision Computing, 1(1): 37–42CrossRefGoogle Scholar
  44. 44.
    Zell, A., Mamier, G., Vogt, M., Mache, N., Hübner, R., Döring, S., Herrmann, K.U., Soyez, T., Schmalzl, M., Sommer, T., et al. (2003). SNNS: Stuttgart Neural Network Simulator User Manual, Version 4.2. Technical Report 3/92. University of Stuttgart. StuttgartGoogle Scholar
  45. 45.
    Directmedia (2002). 10000 Meisterwerke der Malerei — von der Antike bis zum Beginn der Moderne. DVD-ROMGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Penousal Machado
    • 1
  • Juan Romero
    • 2
  • Bill Manaris
    • 3
  1. 1.CISUC Dept. of Informatics EngineeringUniversity of Coimbra3030 CoimbraPortugal
  2. 2.Faculty of Computer ScienceUniversity of CoruñaCP 15071Spain
  3. 3.Computer Science DeptCollege of CharlestonCharlestonUSA

Personalised recommendations