Probe Matrix Problems: Totally Balanced Matrices

  • David B. Chandler
  • Jiong Guo
  • Ton Kloks
  • Rolf Niedermeier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4508)

Abstract

Let Open image in new window be a class of 0/1-matrices. A 0/1/ ⋆-matrix A where the ⋆s induce a submatrix is a probe matrix of Open image in new window if the ⋆s in A can be replaced by 0s and 1s such that A becomes a member of Open image in new window. We show that for Open image in new window being the class of totally balanced matrices, it can be decided in polynomial time whether A is a probe totally balanced matrix. On our route toward proving this main result, we also prove that so-called partitioned probe strongly chordal graphs and partitioned probe chordal bipartite graphs can be recognized in polynomial time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beresnev, V.L.: An efficient algorithm for the uncapacitated facility location problem with totally balanced matrix. Discrete Applied Mathematics 114, 13–22 (2001)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Berge, C.: Balanced matrices. Mathematical Programming 2, 19–31 (1972)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Berry, A., Golumbic, M.C., Lipshteyn, M.: Two tricks to triangulate chordal probe graphs in polynomial time. In: Proc. of 15th ACM–SIAM SODA, pp. 962–969. ACM Press, New York (2004)Google Scholar
  4. 4.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: a Survey. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)MATHGoogle Scholar
  5. 5.
    Chang, G.J., Kloks, A.J.J., Liu, J., Peng, S.-L.: The pIGs full monty – A floor show of minimal separators. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 521–532. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Chang, G.J.: k-Domination and Graph Covering Problems. PhD thesis, School of OR and IE, Cornell University, Ithica, NY, USA (1982)Google Scholar
  7. 7.
    Chudnovsky, M., Robertson, N., Seymour, P.D., Thomas, R.: The strong perfect graph theorem. Annals of Mathematics 164(1), 51–229 (2006)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Conforti, M.: Decomposition of balanced matrices. Journal of Combinatorial Theory, Series B 77, 292–406 (1999)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Dahlhaus, E.: Chordale Graphen im besonderen Hinblick auf parallele Algorithmen. Habilitationsschrift, Universität Bonn, Germany (1991)Google Scholar
  10. 10.
    Farach, M., Kannan, S., Warnow, T.: A robust model for finding optimal evolutionary trees. Algorithmica 13, 155–179 (1995)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Farber, M.: Characterizations of strongly chordal graphs. Discrete Mathematics 43, 173–189 (1983)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Faria, L., de Figueiredo, C., Klein, S., Sritharan, R.: On the complexity of the sandwich problem for strongly chordal graphs and chordal bipartite graphs. Submitted to Theoretical Computer Science (2006)Google Scholar
  13. 13.
    Golumbic, M.C.: Matrix sandwich problems. Linear Algebra and its Applications 277, 239–251 (1998)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. Journal of Algorithms 19, 449–473 (1995)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Golumbic, M.C., Lipshteyn, M.: Chordal probe graphs. Discrete Applied Mathematics 143, 221–237 (2004)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Golumbic, M.C., Wassermann, A.: Complexity and algorithms for graph and hypergraph sandwich problems. Graphs and Combinatorics 14, 223–239 (1998)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Hayward, R., Reed, B.A.: Forbidding holes and antiholes. In: Ramírez, J.L.A., Reed, B.A. (eds.) Perfect Graphs, John Wiley & Sons, Chichester (2001)Google Scholar
  18. 18.
    Huang, J.: Representation characterizations of chordal bipartite graphs. Journal of Combinatorial Theory, Series B 96, 673–683 (2006)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Lubiw, A.: Doubly lexical orderings of matrices. SIAM Journal on Computing 16, 854–879 (1987)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on Computing 16, 973–989 (1987)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, Chichester (1986)MATHGoogle Scholar
  22. 22.
    Seymour, P.D.: Decomposition of regular matroids. Journal of Combinatorial Theory, Series B 28, 305–359 (1980)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Zambelli, G.: A polynomial recognition algorithm for balanced matrices. Journal of Combinatorial Theory, Series B 95, 49–67 (2005)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • David B. Chandler
    • 1
  • Jiong Guo
    • 2
  • Ton Kloks
    • 3
  • Rolf Niedermeier
    • 2
  1. 1.Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716 
  2. 2.Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, D-07743 JenaGermany
  3. 3.School of Computing, University of Leeds, Leeds LS2 9JTUK

Personalised recommendations