Photoluminescence: Science and Applications

Part of the Topics in Applied Physics book series (TAP, volume 111)

Abstract

In the past five years photoluminescence (PL) of SWNTs has gone from discoveryto one of the most actively researched areas, with broad impact on the basic scienceof SWNTs, as well as the promise of applications. The simplest free-carrier models ofperfect semiconducting SWNTs in vacuum predict that they have direct bandgapsand therefore should be efficient light absorbers and emitters. Experimentally,isolating SWNTs from environmental interactions proves crucial to observing thisstrong PL. The Coulomb interaction enhanced by one-dimensional confinementrequires that excitonic models be invoked to understand PL features. Preparedproperly, SWNTs are strong PL emitters, with good quantum yield, showingprincipal PL peaks with characteristic lineshapes and (n,m)-dependent emission andabsorption energies, as well as a rich absorption spectrum. PL has emerged as animportant characterization tool for determining (n,m) and (n,m) distributions,albeit with some limitations. Extrinsic factors, such as chemical environment,temperature, electric and magnetic field, or intrinsic factors, such as phonons, aremanifest in SWNT PL. Possible applications in sensing, biological markers, andoptoelectronics are beginning to emerge from current research in SWNT PL.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley: Band gap fluorescence from individual single-walled carbon nanotubes, Science 297, 593 (2002) CrossRefGoogle Scholar
  2. H. Ajiki, T. Ando: Carbon nanotubes: Optical absorption in {A}haronov–{B}ohm flux, Jpn. J. Appl. Phys. Suppl. 34-1, 107 (1995) Google Scholar
  3. T. Ando: Excitons in carbon nanotubes, J. Phys. Soc. Jpn. 66, 1066 (1997) CrossRefGoogle Scholar
  4. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka: Optical properties of single-wall carbon nanotubes, Synth. Met. 103, 2555 (1999) CrossRefGoogle Scholar
  5. O. Jost, A. A. Gorbunov, W. Pompe, T. Pichler, R. Friedlein, M. Knupfer, M. Reibold, H.-D. Bauer, L. Dunsch, M. S. Golden, J. Fink: Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy, Appl. Phys. Lett. 75, 2217 (1999) CrossRefGoogle Scholar
  6. A. Hagen, T. Hertel: Quantitative analysis of optical spectra from individual single-wall carbon nanotubes, Nano Lett. 3, 383 (2003) CrossRefGoogle Scholar
  7. J. Lefebvre, Y. Homma, P. Finnie: Bright bandgap photoluminescence from unprocessed single walled carbon nanotubes, Phys. Rev. Lett. 90, 217401 (2003) CrossRefGoogle Scholar
  8. J. Kong, A. M. Cassel, H. Dai: Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett. 292, 567 (1998) CrossRefGoogle Scholar
  9. Y. Homma, Y. Kobayashi, T. Ogino, T. Yamashita: Growth of suspended carbon nanotube networks on 100-nm-scale silicon pillars, Appl. Phys. Lett. 81, 2261 (2002) CrossRefGoogle Scholar
  10. J. Lefebvre, J. M. Fraser, P. Finnie, Y. Homma: Photoluminescence from an individual single-walled carbon nanotube, Phys. Rev. B 69, 075403 (2004) CrossRefGoogle Scholar
  11. S. Lebedkin, K. Arnold, F. Hennrich, R. Krupke, B. Renker, M. M. Kappes: {FTIR}-luminescence mapping of dispersed single-walled carbon nanotubes, New J. Phys. 5, 140 (2003) CrossRefGoogle Scholar
  12. S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman: Structure-assigned optical spectra of single-walled carbon nanotubes, Science 298, 2361 (2002) CrossRefGoogle Scholar
  13. S. Bachilo, R. B. Weisman: Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical ``{K}ataura {P}lot'', Nano Lett. 3, 1235 (2003) CrossRefGoogle Scholar
  14. J. Lefebvre, J. M. Fraser, Y. Homma, P. Finnie: Photoluminescence from single-walled carbon nanotubes: A comparison between suspended and micelle-encapsulated nanotubes, Appl. Phys. A: Mater. Sci. Proc. 78, 1107 (2004) CrossRefGoogle Scholar
  15. D. A. Tsyboulski, S. M. Bachilo, R. B. Weisman: Versatile visualization of individual single-walled carbon nanotubes with near-infrared fluorescence microscopy, Nano Lett. 5, 975 (2005) CrossRefGoogle Scholar
  16. O. N. Torrens, D. E. Milkie, M. Zheng, J. M. Kikkawa: Photoluminescence from intertube carrier migration in single-walled carbon nanotube bundles, Nano Lett. 6, 2864 (2006) CrossRefGoogle Scholar
  17. T. Hertel, A. Hagen, V. Talalaev, K. Arnold, F. Hennrich, M. Kappes, S. Rosenthal, J. McBride, H. Ulbricht, E. Flahaut: Spectroscopy of single- and double-wall carbon nanotubes in different environment, Nano Lett. 5, 511 (2005) CrossRefGoogle Scholar
  18. T. Okazaki, S. Bandow, G. Tamura, Y. Fujita, K. Iakoubovskii, S. Kazaoui, N. Minami, T. Saito, K. Suenaga, S. Iijima: Photoluminescence quenching in peapod-derived double-walled carbon nanotubes, Phys. Rev. B 74, 153404 (2006) CrossRefGoogle Scholar
  19. C. L. Kane, E. J. Mele: The ratio problem in single carbon nanotube fluorescence spectroscopy, Phys. Rev. Lett. 90, 207401 (2003) CrossRefGoogle Scholar
  20. E. J. Mele, C. L. Kane: Many body effects in carbon nanotubes fluorescence spectroscopy, Solid State Commun. 135, 527 (2005) CrossRefGoogle Scholar
  21. F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz: The optical resonances in carbon nanotubes arise from excitons, Science 308, 838 (2005) CrossRefGoogle Scholar
  22. J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini, E. Molinari, M. S. Strano, C. Thomsen, C. Lienau: Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Phys. Rev. B 72, 241402 (2005) CrossRefGoogle Scholar
  23. A. Hartschuh, H. N. Pedrosa, L. Novotny, T. D. Krauss: Simultaneous fluorescence and {R}aman scattering from single carbon nanotubes, Science 301, 1354 (2003) CrossRefGoogle Scholar
  24. T. Inoue, K. Matsuda, Y. Murakami, S. Maruyama, Y. Kanemitsu: Diameter dependence of exciton–phonon interaction in individual single-walled carbon nanotubes studied by microphotoluminescence spectroscopy, Phys. Rev. B 73, 233401 (2006) CrossRefGoogle Scholar
  25. G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, S. Roth: Polarized {R}aman spectroscopy on isolated single-wall carbon nanotubes, Phys. Rev. Lett. 85, 5436 (2000) CrossRefGoogle Scholar
  26. M. F. Islam, D. E. Milkie, C. L. Kane, A. G. Yodh, J. M. Kikkawa: Direct measurement of the optical absorption cross section of single-wall carbon nanotubes, Phys. Rev. Lett. 93, 037404 (2004) CrossRefGoogle Scholar
  27. Y. Murakami, E. Einarsson, T. Edamura, S. Maruyama: Polarization dependence of the optical absorption of single-walled carbon nanotubes, Phys. Rev. Lett. 94, 087402 (2005) CrossRefGoogle Scholar
  28. S. Lebedkin, F. Hennrich, T. Skipa, M. M. Kappes: Near-infrared photoluminescence of single-walled carbon nanotubes prepared by the laser vaporization method, J. Phys. Chem. B 107, 1949 (2003) CrossRefGoogle Scholar
  29. Y. Miyauchi, M. Oba, S. Maruyama: Cross polarized optical absorption of single-walled nanotubes by polarized photoluminescence excitation spectroscopy, Phys. Rev. B 74, 205440 (2006) CrossRefGoogle Scholar
  30. H. Zhao, S. Mazumdar: Electron–electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes, Phys. Rev. Lett. 93, 157402 (2004) CrossRefGoogle Scholar
  31. S. Uryu, T. Ando: Exciton absorption of perpendicularly polarized light in carbon nanotubes, Phys. Rev. B 74, 155411 (2006) CrossRefGoogle Scholar
  32. J. Lefebvre, P. Finnie: Polarized photoluminescence excitation spectroscopy of single-walled carbon nanotubes, Phys. Rev. Lett. 98, 167406 (2007) CrossRefGoogle Scholar
  33. J. Lefebvre, D. G. Austing, J. Bond, P. Finnie: Photoluminescence imaging of suspended single-walled carbon nanotubes, Nano Lett. 6, 1603–1608 (2006) CrossRefGoogle Scholar
  34. S. Berger, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, X. Marie: Temperature dependence of exciton recombination in semiconducting single-walled carbon nanotubes, Nano Lett. 7, 398 (2007) CrossRefGoogle Scholar
  35. J. Lefebvre, P. Finnie, Y. Homma: Temperature dependent photoluminescence from single-walled carbon nanotubes, Phys. Rev. B 70, 045419 (2004) CrossRefGoogle Scholar
  36. I. B. Mortimer, R. J. Nicholas: Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes, Phys. Rev. Lett. 98, 027404 (2007) CrossRefGoogle Scholar
  37. Y. Oyama, R. Saito, K. Sato, J. Jiang, G. G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, M. S. Dresselhaus: Photoluminescence intensity of single-wall carbon nanotubes, Carbon 44, 873 (2006) CrossRefGoogle Scholar
  38. S. Reich, C. Thomsen, J. Robertson: Exciton resonances quench the photoluminescence of zigzag carbon nanotubes, Phys. Rev. Lett. 95, 077402 (2005) CrossRefGoogle Scholar
  39. P. Cherukuri, S. M. Bachilo, S. H. Litovsky, R. B. Weisman: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells, J. Am. Chem. Soc. 126, 15638 (2004) CrossRefGoogle Scholar
  40. D. G. Austing, J. Lefebvre, J. Bond, P. Finnie: Carbon contacted nanotube field effect transistors, Appl. Phys. Lett. 90, 103112 (2007) CrossRefGoogle Scholar
  41. A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny: Nanoscale optical imaging of single-walled carbon nanotubes, J. Lumin. 119, 204 (2006) CrossRefGoogle Scholar
  42. H. Qian, T. Gokus, N. Anderson, L. Novotny, A. J. Meixner, A. Hartschuh: Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes, Phys. Stat. Sol. B 243, 3146 (2006) CrossRefGoogle Scholar
  43. A. Hartschuh, H. N. Pedrosa, J. Peterson, L. Huang, P. Anger, H. Qian, A. J. Meixner, M. Steiner, L. Novotny, T. D. Krauss: Single carbon nanotube optical spectroscopy, ChemPhysChem 6, 577 (2005) CrossRefGoogle Scholar
  44. H. Htoon, M. J. O'Connell, P. J. Cox, S. K. Doorn, V. I. Klimov: Low temperature emission spectra of individual single-walled carbon nanotubes: Multiplicity of subspecies within single-species nanotube ensembles, Phys. Rev. Lett. 93, 027401 (2004) CrossRefGoogle Scholar
  45. K. Matsuda, Y. Kanemitsu, K. Irie, T. Saiki, T. Someya, Y. Miyauchi, S. Maruyama: Photoluminescence intermittency in an individual single-walled carbon nanotube at room temperature, Appl. Phys. Lett. 86, 123116 (2005) CrossRefGoogle Scholar
  46. K. Kaminska, J. Lefebvre, D. G. Austing, P. Finnie: Real-time global {R}aman imaging and optical manipulation of suspended carbon nanotubes, Phys. Rev. B 73, 235410 (2006) CrossRefGoogle Scholar
  47. H. Htoon, M. J. O'Connell, S. K. Doorn, V. I. Klimov: Single carbon nanotubes probed by photoluminescence excitation spectroscopy: the role of phonon-assisted transitions, Phys. Rev. Lett. 94, 127403 (2005) CrossRefGoogle Scholar
  48. F. Plentz, H. B. Ribeiro, A. Jorio, M. S. Strano, M. A. Pimenta: Direct experimental evidence of exciton–phonon bound states in carbon nanotubes, Phys. Rev. Lett. 95, 247401 (2005) CrossRefGoogle Scholar
  49. V. Perebeinos, J. Tersoff, P. Avouris: Electron–phonon interaction and transport in semiconducting carbon nanotubes, Phys. Rev. Lett. 94, 086802 (2005) CrossRefGoogle Scholar
  50. Y. Miyauchi, S. Maruyama: Identification of an excitonic phonon sideband by photoluminescence spectroscopy of single-walled carbon-13 nanotubes, Phys. Rev. B 74, 035415 (2006) CrossRefGoogle Scholar
  51. V. Perebeinos, J. Tersoff, P. Avouris: Scaling of excitons in carbon nanotubes, Phys. Rev. Lett. 92, 257402 (2004) CrossRefGoogle Scholar
  52. P. Finnie, Y. Homma, J. Lefebvre: Band-gap shift transition in the photoluminescence of single-walled carbon nanotubes, Phys. Rev. Lett. 94, 247401 (2005) CrossRefGoogle Scholar
  53. G. Dukovic, B. E. White, Z. Zhou, F. Wang, S. Jockusch, M. L. Steigerwald, T. F. Heinz, R. A. Friesner, N. J. Turro, L. E. Brus: Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes, J. Am. Chem. Soc. 126, 15269 (2004) CrossRefGoogle Scholar
  54. L. Yang, J. Han: Electronic structure of deformed carbon nanotubes, Phys. Rev. Lett. 85, 000154 (2000) CrossRefGoogle Scholar
  55. K. Arnold, S. Lebedkin, O. Kiowski, F. Hennrich, M. M. Kappes: Matrix-imposed stress-induced shifts in the photoluminescence of single-walled carbon nanotubes at low temperatures, Nano Lett. 4, 2349 (2004) CrossRefGoogle Scholar
  56. J. Wu, W. Walukiewicz, W. Shan, E. Bourret-Courchesne, J. W. Ager, K. M. Yu, E. E. Haller, K. Kissell, S. M. Bachilo, R. B. Weisman, R. E. Smalley: Structure-dependent hydrostatic deformation potentials of individual single-walled carbon nanotubes, Phys. Rev. Lett. 93, 017404 (2004) CrossRefGoogle Scholar
  57. H. Maki, T. Sato, K. Ishibashi: Direct observation of the deformation and the band gap change from an individual single-walled carbon nanotube under uniaxial strain, Nano Lett. 7, 890 (2007) CrossRefGoogle Scholar
  58. R. B. Capaz, C. D. Spataru, P. Tangney, M. L. Cohen, S. G. Louie: Temperature dependence of the band gap of semiconducting carbon nanotubes, Phys. Rev. Lett. 94, 036801 (2005) CrossRefGoogle Scholar
  59. D. E. Milkie, C. Staii, S. Paulson, S. E. Hindman, A. T. Johnson, J. M. Kikkawa: Controlled switching of optical emission energies in semiconducting single-walled carbon nanotubes, Nano Lett. 5, 1135 (2005) CrossRefGoogle Scholar
  60. A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, A. J. Meixner, A. Hartschuh: Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes, Phys. Rev. Lett. 95, 197401 (2005) CrossRefGoogle Scholar
  61. L. J. Li, R. J. Nicholas: Magneto-photoluminescence of chirality-characterized single-walled carbon nanotubes, Int. J. Mod. Phys. B 18, 3509 (2004) CrossRefGoogle Scholar
  62. J. Shaver, J. Kono, O. Portugall, V. Krsti, G. L. J. A. Rikken, Y. Miyauchi, S. Maruyama, V. Perebeinos: Magnetic brightening of dark excitons in single-walled carbon nanotubes, Nano Lett. 7, 1851 (2007) CrossRefGoogle Scholar
  63. Y. Ohno, S. Kishimoto, T. Mizutani: Photoluminescence of single-walled carbon nanotubes in field-effect transistors, Nanotechnol. 17, 549 (2006) CrossRefGoogle Scholar
  64. D. A. Heller, S. Baik, T. E. Eurell, M. S. Strano: Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors, Adv. Mater. 17, 2793 (2005) CrossRefGoogle Scholar
  65. J. A. Misewich, R. Martel, P. Avouris, J. C. Tsang, S. Heinze, J. Tersoff: Electrically induced optical emission from a carbon nanotube {FET}, Science 300, 783 (2003) CrossRefGoogle Scholar
  66. J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, P. Avouris: Bright infrared emission from electrically induced excitons in carbon nanotubes, Science 310, 1171 (2005) CrossRefGoogle Scholar
  67. M. Freitag, Y. Martin, J. A. Misewich, R. Martel, P. Avouris: Photoconductivity of single carbon nanotubes, Nano Lett. 3, 1067 (2003) CrossRefGoogle Scholar
  68. I. A. Levitsky, W. B. Euler: Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination, Appl. Phys. Lett. 83, 1857 (2003) CrossRefGoogle Scholar
  69. M. E. Itkis, F. Borondics, A. Yu, R. C. Haddon: Bolometric infrared photoresponse of suspended single-walled carbon nanotube films, Science 312, 413 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jacques Lefebvre
    • 1
  • Shigeo Maruyama
    • 2
  • Paul Finnie
    • 1
  1. 1.Institute for Microstructural SciencesNationalResearch Council of CanadaOttawaCanada
  2. 2.Department of Mechanical EngineeringThe University of TokyoTokyoJapan

Personalised recommendations