Mechanical Properties, Thermal Stability and Heat Transport in Carbon Nanotubes

  • Takahiro Yamamoto
  • Kazuyuki Watanabe
  • Eduardo R. Hernández
Part of the Topics in Applied Physics book series (TAP, volume 111)


Ever since the discovery of carbon nanotubes (CNTs) in the early 1990s, it wasanticipated that these nanostructures would have truly remarkable mechanical andheat-transport properties, given the strength of the carbon-carbon bond withingraphene layers in graphite. Nowadays, there is growing evidence, coming fromboth experimental and theoretical studies, that CNTs do indeed have anoutstandingly high Young’s modulus, high thermal stability and thermalconductivity. In this contribution, we provide an overview of the current stateof knowledge on these properties in CNTs and related nanostructures.


Thermal Conductivity Carbon Nanotubes Boron Nitride Heat Transport Umklapp Scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. N. Coleman, U. Khan, W. J. Blau, Y. K. Gun'ko: Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites, Carbon 44, 1624 (2006) CrossRefGoogle Scholar
  2. R. Tenne: Inorganic nanotubes and fullerene-like nanoparticles, Nature Nanotechnol. 1, 103 (2006) CrossRefGoogle Scholar
  3. A. M. Fennimore, T. D. Yuzvinsky, W. Q. Han, M. S. Fuhrer, J. Cumings, A. Zettl: Rotational actuators based on carbon nanotubes, Nature London 424, 408 (2003) CrossRefGoogle Scholar
  4. T. Iwai, H. Shioya, D. Kondo, S. Hirose, A. Kawabata, S. Sato, M. Nihei, T. Kikkawa, K. Joshin, Y. Awano, N. Yokoyama: Thermal and source bumps utilizing carbon nanotubes for flip-chip high power amplifiers, IEEE IEDM Tech. Digest 257 (2005) Google Scholar
  5. L. D. Landau, E. M. Lifshitz: Theory of Elasticity (Pergamon, Oxford 1986) Google Scholar
  6. B. I. Yakobson, P. Avouris: in M. Dresselhaus, G. E. Dresselhaus, P. Avouris (Eds.): Carbon Nanotubes, Synthesis, Structure, Properties and Applications, Top. Appl. Phys. 80 (Springer, Berlin, Heidelberg 2001) pp. 287–328 Google Scholar
  7. M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier, E. Hernández: Electronic, thermal and mechanical properties of carbon nanotubes, Philos. Trans. R. Soc. Lond. A 362, 2065 (2004) CrossRefGoogle Scholar
  8. J. P. Salvetat, S. Bhattacharyya, R. B. Pipes: Progress on mechanics of carbon nanotubes and derived materials, J. Nanosci. Nanotechnol. 6, 1857 (2006) CrossRefGoogle Scholar
  9. S. Reich, C. Thomsen, J. Maultzsch: Carbon Nanotubes, Basic Concepts and Physical Properties (Wiley-VCH 2004) Google Scholar
  10. J. Hone: in M. Dresselhaus, G. E. Dresselhaus, P. Avouris (Eds.): Carbon Nanotubes, Synthesis, Structure, Properties and Applications, Top. Appl. Phys. 80 (Springer, Berlin, Heidelberg 2001) pp. 287–328 Google Scholar
  11. D. H. Robertson, D. W. Brenner, J. W. Mintmire: Progress on mechanics of carbon nanotubes and derived materials, Phys. Rev. B 45, 12592 (1992) CrossRefGoogle Scholar
  12. D. Sánchez-Portal, E. Artacho, J. M. Soler, A. Rubio, P. Ordejόn: Ab initio structural, elastic and vibrational properties of carbon nanotubes, Phys. Rev. B 59, 12678 (1999) CrossRefGoogle Scholar
  13. J. Tersoff: New empirical-approach for the structure and energy of covalent systems, Phys. Rev. B 37, 6991 (1988) CrossRefGoogle Scholar
  14. D. W. Brenner: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42, 9458 (1990) CrossRefGoogle Scholar
  15. G. G. Tibbets: Why are carbon filaments tubular, J. Cryst. Growth 66, 632 (1983) CrossRefGoogle Scholar
  16. B. T. Kelly: Physics of Graphite (Applied Science, London 1981) Google Scholar
  17. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg: Graphite Fibers and Filaments (Springer, Berlin, Heidelberg 1988) CrossRefGoogle Scholar
  18. M. M. Treacy, T. W. Ebbesen, J. M. Gibson: Exceptionally high {Y}oung's modulus observed for individual carbon nanotubes, Nature (London) 381, 678 (1996) CrossRefGoogle Scholar
  19. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy: Young's modulus of single-walled nanotubes, Phys. Rev. B 58, 14013 (1998) CrossRefGoogle Scholar
  20. N. G. Chopra, A. Zettl: Measurement of the elastic modulus of a multi-wall boron nitride nanotube, Solid State Commun. 105, 297 (1998) CrossRefGoogle Scholar
  21. E. W. Wong, P. E. Sheehan, C. M. Lieber: Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes, Science 277, 1971 (1997) CrossRefGoogle Scholar
  22. M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S. Washburn, R. Superfine: Bending and buckling of carbon nanotubes under large strain, Nature (London) 389, 582 (1997) CrossRefGoogle Scholar
  23. J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stoeckli, N. A. Burnham, L. Forrό: Elastic and shear moduli of singlewalled carbon nanotube ropes, Phys. Rev. Lett. 82, 944 (1999) CrossRefGoogle Scholar
  24. J. P. Salvetat, A. J. Kulik, J. M. Bonard, G. A. D. Briggs, T. Stoeckli, K. Méténier, S. Bonnamy, F. Béguin, N. A. Burnham, L. Forrό: Elastic modulus of ordered and disordered multiwalled carbon nanotubes, Adv. Mater. 11, 161 (1999) CrossRefGoogle Scholar
  25. A. Kis, G. Csányi, J. P. Salvetat, T. N. Lee, E. Couteau, A. J. Kulik, W. Benoit, J. Brugger, L. Forrό: Reinforcement of single-walled carbon nanotube bundles by intertube bridging, Nature Mater. 3, 153 (2004) CrossRefGoogle Scholar
  26. B. I. Yakobson, C. J. Brabec, J. Bernholc: Nanomechanics of carbon tubes: instabilities beyond linear regime, Phys. Rev. Lett. 76, 2511 (1996) CrossRefGoogle Scholar
  27. S. Iijima, C. J. Brabec, A. Maiti, J. Bernholc: Structural flexibility of carbon nanotubes, J. Chem. Phys. 104, 2089 (1996) CrossRefGoogle Scholar
  28. J. P. Lu: Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett. 79, 1297 (1997) CrossRefGoogle Scholar
  29. E. Hernández, C. Goze, P. Bernier, A. Rubio: Elastic properties of {C} and {B}x{C}y{N}z composite nanotubes, Phys. Rev. Lett. 80, 4502 (1998) CrossRefGoogle Scholar
  30. E. Hernández, C. Goze, P. Bernier, A. Rubio: Elastic properties of singlewall nanotubes, Appl. Phys. A 68, 287 (1999) Google Scholar
  31. D. Porezag, T. Frauenheim, T. Koehler, G. Seifert, R. Kaschner: Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon, Phys. Rev. B 51, 12947 (1995) CrossRefGoogle Scholar
  32. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejόn, D. Sánchez-Portal: The {SIESTA} method for ab initio order-n materials simulation, J. Phys. Condens. Matter 14, 2745 (2002) CrossRefGoogle Scholar
  33. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287, 637 (2000) CrossRefGoogle Scholar
  34. M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett. 84, 5552 (2000) CrossRefGoogle Scholar
  35. J. Y. Huang, S. Chen, Z. Q. Wang, K. Kempa, Y. M. Wang, S. H. Jo, G. Chen, M. S. Dresselhaus, Z. F. Ren: Superplastic carbon nanotubes, Nature (London) 439, 281 (2006) CrossRefGoogle Scholar
  36. J. Y. Huang, S. Chen, Z. F. Ren, Z. Q. Wang, D. Z. Wang, M. Vaziri, Z. Suo, G. Chen, M. S. Dresselhaus: Kink formation and motion in carbon nanotubes at high temperatures, Phys. Rev. Lett. 97, 075501 (2006) CrossRefGoogle Scholar
  37. B. I. Yakobson: in Proceedings of the Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, vol. 97 (Electrochem. Soc., Pennington 1997) p. 549 Google Scholar
  38. B. I. Yakobson: Mechanical relaxation and intramolecular plasticity in carbon nanotubes, Appl. Phys. Lett. 72, 918 (1998) CrossRefGoogle Scholar
  39. M. B. Nardelli, B. I. Yakobson, J. Bernholc: Mechanism of strain release in carbon nanotubes, Phys. Rev. B 57, R4277 (1998) CrossRefGoogle Scholar
  40. M. B. Nardelli, B. I. Yakobson, J. Bernholc: Brittle and ductile behavior in carbon nanotubes, Phys. Rev. Lett. 81, 4656 (1998) CrossRefGoogle Scholar
  41. A. J. Stone, D. J. Wales: Theoretical studies of icosahedral {C}60 and some related species, Chem. Phys. Lett. 128, 501 (1986) CrossRefGoogle Scholar
  42. T. Dumitric\v{a}, T. Belytschko, B. I. Yakobson: Bond-breaking bifurcation states in carbon nanotube fracture, J. Chem. Phys. 118, 9485 (2003) CrossRefGoogle Scholar
  43. T. Dumitric\v{a}, M. Hua, B. I. Yakobson: Symmetry, time and temperature dependent strength of carbon nanotubes, PNAS 103, 6105 (2006) CrossRefGoogle Scholar
  44. F. Ding, K. Jiao, M. Wu, B. I. Yakobson: Pseudoclimb and dislocation dynamics in superplastic nanotubes, Phys. Rev. Lett. 98, 075503 (2007) CrossRefGoogle Scholar
  45. B. W. Smith, M. Monthioux, D. E. Luzzi: Encapsulated {C}60 in carbon nanotubes, Nature (London) 396, 323 (1998) CrossRefGoogle Scholar
  46. B. W. Smith, D. E. Luzzi: Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis, Chem. Phys. Lett. 321, 169 (2000) CrossRefGoogle Scholar
  47. S. Bandow, M. Takizawa, K. Hirahara, M. Yudasaka, S. Iijima: Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in sigle-wall carbon nanotubes, Chem. Phys. Lett. 337, 48 (2001) CrossRefGoogle Scholar
  48. E. Hernández, V. Meunier, B. W. Smith, R. Rurali, H. Terrones, M. B. Nardelli, M. Terrones, D. E. Luzzi, J.-C. Charlier: Fullerene coalescence in nanopeapods: a path to novel tubular carbon, Nano Lett. 3, 1037 (2003) CrossRefGoogle Scholar
  49. M. Terrones, H. Terrones, F. Banhart, J.-C. Charlier, P. M. Ajayan: Coalescence of single-walled carbon nanotubes, Science 288, 1226 (2000) CrossRefGoogle Scholar
  50. M. J. Lόpez, A. Rubio, J. A. Alonso, S. Lefrant, K. Méténier, S. Bonnamy: Patching and tearing single-wall carbon nanotube ropes into multiwall carbon nanotubes, Phys. Rev. Lett. 89, 255501 (2002) CrossRefGoogle Scholar
  51. M. Yoon, S. Han, G. Kim, S. B. Lee, S. Berber, E. Osawa, J. Ihm, M. Terrones, F. Banhart, J.-C. Charlier, N. Grobert, H. Terrones, P. M. Ajayan, D. Tománek: Zipper mechanism for nanotube fusion: theory and experiment, Phys. Rev. Lett. 92, 075504 (2004) CrossRefGoogle Scholar
  52. M. Terrones, F. Banhart, N. Grobert, J.-C. Charlier, H. Terrones, P. M. Ajayan: Molecular junctions by joining single-walled carbon nanotubes, Phys. Rev. Lett. 89, 075505 (2002) CrossRefGoogle Scholar
  53. Y. F. Zhao, B. I. Yakobson, R. E. Smalley: Dynamic topology of fullerene coalescence, Phys. Rev. Lett. 88, 185501 (2002) CrossRefGoogle Scholar
  54. Y. F. Zhao, R. E. Smalley, B. I. Yakobson: Coalescence of fullerene cages: topology, energetics and molecular dynamics simulation, Phys. Rev. B 66, 195409 (2002) CrossRefGoogle Scholar
  55. U. D. Venkateswaran, A. M. Rao, E. Richter, M. Menon, A. Rinzler, R. E. Smalley, P. C. Eklund: Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure, Phys. Rev. B 59, 10928 (1999) CrossRefGoogle Scholar
  56. S. Reich, C. Thomsen, P. Ordejόn: Elastic properties of carbon nanotubes under hydrostatic pressure, Phys. Rev. B 65, 153407 (2004) CrossRefGoogle Scholar
  57. S. Reich, C. Thomsen, P. Ordejόn: Elastic properties and pressure-induced phase transitions of single-walled carbon nanotubes, Phys. Stat. Sol. B 235, 354 (2003) CrossRefGoogle Scholar
  58. X. H. Zhang, D. Y. Sun, Z. F. Liu, X. G. Gong: Structure and phase transitions of single-wall carbon nanotube bundles under hydrostatic pressure, Phys. Rev. B 70, 035422 (2004) CrossRefGoogle Scholar
  59. S. E. Baltazar, A. H. Romero, J. L. Rodríguez, R. Martoňák, J. Phys.: Finite singlewall capped carbon nanotubes under hydrostatic pressure, Condens. Matter 18, 9119 (2006) CrossRefGoogle Scholar
  60. J. Cumings, A. Zettl: Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science 289, 602 (2000) CrossRefGoogle Scholar
  61. Q. Zheng, Q. Jiang: Multiwalled carbon nanotubes as gigahertz oscillators, Phys. Rev. Lett. 88, 045503 (2002) CrossRefGoogle Scholar
  62. S. B. Legoas, V. R. Coluci, S. F. Braga, P. Z. Coura, S. O. Dantas, D. S. Galv{\~a}o: Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators, Phys. Rev. Lett. 90, 055504 (2003) CrossRefGoogle Scholar
  63. W. Guo, Y. Guo, H. Gao, Q. Zheng, W. Zhong: Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes, Phys. Rev. Lett. 91, 125501 (2003) CrossRefGoogle Scholar
  64. Y. Zhao, C. Ma, G. Hua, Q. Jiang: Energy dissipation mechanisms in carbon nanotube oscillators, Phys. Rev. Lett. 91, 175504 (2003) CrossRefGoogle Scholar
  65. J. Servantie, P. Gaspard: Methods of calculation of a friction coefficient: application to nanotubes, Phys. Rev. Lett. 91, 185593 (2003) CrossRefGoogle Scholar
  66. J. Servantie, P. Gaspard: Translational dynamics and friction in doublewalled carbon nanotubes, Phys. Rev. B 73, 125428 (2006) CrossRefGoogle Scholar
  67. P. Tangney, S. G. Louie, M. L. Cohen: Dynamic sliding friction between concentric carbon nanotubes, Phys. Rev. Lett. 93, 065503 (2004) CrossRefGoogle Scholar
  68. P. Tangney, M. L. Cohen, S. G. Louie: Giant wave-drag enhancement of friction in sliding carbon nanotubes, Phys. Rev. Lett. 97, 195901 (2006) CrossRefGoogle Scholar
  69. S. Berber, Y.-K. Kwon, D. Tom{\' a}nek: Unusally high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84, 4613 (2000) CrossRefGoogle Scholar
  70. J. Hone, M. Whitney, C. Piskoti, A. Zettl: Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B 59, R2514 (1999) CrossRefGoogle Scholar
  71. C. Yu, L. Shi, Z. Yao, D. Li, A. Majumdar: Thermal conductance and thermopower of an individual single-wall carbon nanotube, Nano Lett. 5, 1842 (2005) CrossRefGoogle Scholar
  72. N. Mingo, D. A. Broido: Carbon nanotube ballistic thermal conductance and its limits, Phys. Rev. Lett. 95, 096105 (2005) CrossRefGoogle Scholar
  73. W. Yu, L. Lu, Z. Dian-lin, Z. W. Pan, S. Xie: Linear specific heat of carbon nanotubes, Phys. Rev. B 59, R9015 (1999) CrossRefGoogle Scholar
  74. R. E. Peierls: Quantum Theory of Solid (Oxford University Press, New York 1955) Google Scholar
  75. L. G. C. Rego, G. Kirczenow: Quantized thermal conductance of dielectric quantum wires, Phys. Rev. Lett 81, 232 (1998) CrossRefGoogle Scholar
  76. T. Yamamoto, S. Watanabe, K. Watanabe: Universal features of quantized thermal conductance of carbon nanotubes, Phys. Rev. Lett. 92, 075502 (2004) CrossRefGoogle Scholar
  77. T. Yamamoto, K. Watanabe: Nonequilibrium {G}reen's function approach to phonon transport in defective carbon nanotubes, Phys. Rev. Lett. 96, 255503 (2006) CrossRefGoogle Scholar
  78. N. Mingo: Anharmonic phonon flow through molecular-sized junctions, Phys. Rev. B 74, 125402 (2006) CrossRefGoogle Scholar
  79. J.-S. Wang, J. Wang, N. Zeng: Nonequilibrium {G}reen's function approach to mesoscopic thermal transport, Phys. Rev. B 74, 033408 (2006) CrossRefGoogle Scholar
  80. P. K. Schelling, S. R. Phillpot, P. Keblinski: Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation, Appl. Phys. Lett. 80, 2484 (2002) CrossRefGoogle Scholar
  81. N. Kondo, T. Yamamoto, K. Watanabe: Phonon wavepacket scattering dynamics in defective carbon nanotubes, Jpn. J. Appl. Phys. 45, L963 (2006) CrossRefGoogle Scholar
  82. J. Wang, J.-S. Wang: Mode-dependent energy transmission across nanotube junctions calculated with a lattice dynamics approach, Phys. Rev. B 74, 054303 (2006) CrossRefGoogle Scholar
  83. J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, J. E. Fischer: Thermal properties of carbon nanotubes and nanotube-based materials, Appl. Phys. A 74, 339 (2002) CrossRefGoogle Scholar
  84. H.-Y. Chiu, V. V. Deshpande, H. W. C. Postma, C. N. Lau, C. Mik{\' o}, L. Forr{\' o}, M. Bockrath: Ballistic phonon thermal transport in multiwalled carbon nanotubes, Phys. Rev. Lett. 95, 226101 (2005) CrossRefGoogle Scholar
  85. R. Saito, G. Dresselhaus, M. S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College, London 1998) CrossRefGoogle Scholar
  86. S. Maruyama: A molecular dynamics simulation of heat conduction of a finite length {SWNT}s, Physica B 323, 193 (2002) CrossRefGoogle Scholar
  87. S. Maruyama: A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube, Microscale Thermophys. Eng. 7, 41 (2003) CrossRefGoogle Scholar
  88. R. Livi, S. Lepri: Thermal physics: heat in one dimension, Nature 421, 327 (2003) CrossRefGoogle Scholar
  89. N. Mingo, D. A. Broido: Length dependence of carbon nanotube thermal conductivity and the "problem of long waves", Nano Lett. 5, 1221 (2005) CrossRefGoogle Scholar
  90. J. Wang, J.-S. Wang: Carbon nanotube thermal transport: ballistic to diffuse, Appl. Phys. Lett. 88, 111909 (2006) CrossRefGoogle Scholar
  91. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima: Direct evidence for atomic defects in graphene layers, Nature (London) 430, 870 (2004) CrossRefGoogle Scholar
  92. S. Maruyama, Y. Igarashi, Y. Taniguchi, J. Shiomi: Anisotropic heat transfer of single-walled carbon nanotubes, J. Therm. Sci. Tech. 1, 138 (2006) CrossRefGoogle Scholar
  93. N. Kondo, T. Yamamoto, K. Watanabe: Molecular-dynamics simulations of thermal transport in carbon nanotubes with structural defects, e-J. Surf. Sci. Nanotech. 4, 239 (2006) CrossRefGoogle Scholar
  94. C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl: Isotope effects on the thermal conductivity of boron nitride nanotubes, Phys. Rev. Lett. 97, 085901 (2006) CrossRefGoogle Scholar
  95. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai: Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Lett. 6, 96 (2006) CrossRefGoogle Scholar
  96. Y. Miyamoto, S. Berber, M. Yoon, A. Rubio, D. Tom{\' a}nek: Onset of nanotube decay under extreme thermal and electronic excitations, Physica B 323, 78 (2002) CrossRefGoogle Scholar
  97. A. V. Krasheninnikov, K. Nordlund: Stability of irradiation-induced point defects on walls of carbon nanotubes, J. Vac. Sci. Technol. B 20, 728 (2002) CrossRefGoogle Scholar
  98. P. Kim, L. Shi, A. Majumdar, P. L. McEuen: Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87, 215502 (2001) CrossRefGoogle Scholar
  99. J. M. Ziman: Electrons and Phonons (Oxford University Press, London 1960) Google Scholar
  100. J. Heremans, C. P. Beetz, Jr.: Thermal conductivity and thermopower of vapor-grown graphite fibers, Phys. Rev. B 32, 1981 (1985) CrossRefGoogle Scholar
  101. R. P. Feynman: There is plenty of room at the bottom, Eng. Sci. (Feb. 1960) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Takahiro Yamamoto
    • 1
  • Kazuyuki Watanabe
    • 1
  • Eduardo R. Hernández
    • 2
  1. 1.Department of PhysicsTokyoUniversity of ScienceTokyoJapan
  2. 2.Institut de Ciencia de Materials de Barcelona (ICMAB–CSIC)BarcelonaSpain

Personalised recommendations