Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes

  • J.-C. Charlier
  • P. C. Eklund
  • J. Zhu
  • A. C. Ferrari
Part of the Topics in Applied Physics book series (TAP, volume 111)


The discovery of Novoselov et al. (2004) of a simple method to transfer a singleatomic layer of carbon from the c-face of graphite to a substrate suitable for themeasurement of its electrical and optical properties has led to a renewed interest inwhat was considered to be before that time a prototypical, yet theoretical,two-dimensional system. Indeed, recent theoretical studies of graphene reveal that thelinear electronic band dispersion near the Brillouin zone corners gives rise to electronsand holes that propagate as if they were massless fermions and anomalous quantumtransport was experimentally observed. Recent calculations and experimentaldetermination of the optical phonons of graphene reveal Kohn anomaliesat high-symmetry points in the Brillouin zone. They also show that theBorn–Oppenheimer principle breaks down for doped graphene. Since a carbonnanotube can be viewed as a rolled-up sheet of graphene, these recent theoretical andexperimental results on graphene should be important to researchers working oncarbon nanotubes. The goal of this contribution is to review the exciting newsabout the electronic and phonon states of graphene and to suggest howthese discoveries help understand the properties of carbon nanotubes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. R. Wallace: The band theory of graphite, Phys. Rev. 71, 622 (1947) Google Scholar
  2. L. M. Viculis, J. J. Mack, R. B. Kaner: A chemical route to carbon nanoscrolls, Science 299, 1361 (2003) Google Scholar
  3. L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, R. B. Kaner: Intercalation and exfoliation routes to graphite nanoplatelets, J. Mater. Chem. 15, 974 (2005) Google Scholar
  4. S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hammon, R. C. Haddon: Solution properties of graphite and graphene, J. Am. Chem. Soc. 128, 7720 (2006) Google Scholar
  5. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhass, E. J. Zimmey, E. A. Stach, R. D. Piner, S.-B. T. Nguyen, R. S. Ruoff: Graphene-based composite materials, Nature 442, 282 (2006) Google Scholar
  6. S. Stankovich, R. D. Piner, X. Chen, N. Wu, T. Nguyen, R. S. Ruoff: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate), J. Mater. Chem. 16, 155 (2006) Google Scholar
  7. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, S. V. Dubonos, I. V. Girgorieva, A. A. Firsov: Electric field effect in atomically thin carbon films, Science 306, 666 (2004) Google Scholar
  8. Y. B. Zhang, J. P. Small, W. V. Pontius, P. Kim: Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices, Appl. Phys. Lett. 86, 073104 (2005) Google Scholar
  9. I. Forbeaux, J. M. Themlin, J. M. Debever: High-temperature graphitization of the 6{H}-{S}i{C} (000(1)over-bar) face, Surf. Sci. 442, 9 (1999) Google Scholar
  10. C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer: Ultrathin epitaxial graphite: 2{D} electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B 108, 19912 (2004) Google Scholar
  11. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg: Controlling the electronic structure of bilayer graphene, Science 313, 951 (2006) Google Scholar
  12. E. Rolling, G. H. Gweon, S. Y. Zhou, B. S. Mun, J. L. McChesney, B. S. Hussain, A. Fedorov, P. N. First, W. A. de Heer, A. Lanzara: Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate, J. Phys. Chem. Solids 67, 2172 (2006) Google Scholar
  13. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Girgorieva, S. V. Dubonos, A. A. Firsov: Two-dimensional gas of massless {D}irac fermions in graphene, Nature 438, 197 (2005) Google Scholar
  14. Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim: Experimental observation of the quantum {H}all effect and {B}erry's phase in graphene, Nature 438, 201 (2005) Google Scholar
  15. A. K. Geim, K. S. Novoselov: The rise of graphene, Nature Mater. 6, 183 (2007) Google Scholar
  16. M. Born, R. Oppenheimer: Ann. Phys. 84, 457 (1927) Google Scholar
  17. S. Pisana, M. Lazzeri, C. Casiraghi, K. Novoselov, A. K. Geim, A. C. Ferrari, F. Mauri: Breakdown of the adiabatic {B}orn–{O}ppenheimer approximation in graphene, Nature Mater. 6, 198 (2007) Google Scholar
  18. S. Piscanec, M. Lazzeri, F. Mauri, A. Ferrari, J. Robertson: Kohn anomalies and electron–phonon interactions in graphite, Phys. Rev. Lett. 93, 185503 (2004) Google Scholar
  19. S. Piscanec, M. Lazzeri, J. Robertson, A. C. Ferrari, F. Mauri: Optical phonons in carbon nanotubes: Kohn anomalies, {P}eierls distortions, and dynamic effects, Phys. Rev. B 75, 035427 (2007) Google Scholar
  20. M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, J. Robertson: Phonon linewidths and electron–phonon coupling in graphite and nanotubes, Phys. Rev. B 73, 155426 (2006) Google Scholar
  21. M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, J. Robertson: Electron transport and hot phonons in carbon nanotubes, Phys. Rev. Lett. 95, 236802 (2005) Google Scholar
  22. N. Caudal, A. M. Saitta, M. Lazzeri, F. Mauri: Kohn anomalies and nonadiabaticity in doped carbon nanotubes, Phys. Rev. B 75, 115423 (2007) Google Scholar
  23. J.-C. Charlier, X. Blase, S. Roche: Electronic and transport properties of nanotubes, Rev. Mod. Phys. 79, 677–732 (2007) Google Scholar
  24. J. C. Slonczewski, P. R. Weiss: Band structure of graphite, Phys. Rev. 109, 272 (1958) Google Scholar
  25. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim: Two-dimensional atomic crystals, Proc. Nature Acad. Sci. USA 102, 10451 (2005) Google Scholar
  26. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. {De Heer}: Electronic confinement and coherence in patterned epitaxial graphene, Science 312, 1191 (2006) Google Scholar
  27. K. Nomura, A. H. MacDonald: Quantum transport of massless {D}irac fermions, Phys. Rev. Lett. 98, 076602 (2007) Google Scholar
  28. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. F. M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A. K. Geim: Unconventional quantum {H}all effect and {B}erry's phase of 2 pi in bilayer graphene, Nature Phys. 2, 177 (2006) Google Scholar
  29. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, A. K. Geim: Strong suppression of weak localization in graphene, Phys. Rev. Lett. 97, 016801 (2006) Google Scholar
  30. V. M. Galitski, S. Adam, S. D. Sarma: Statistics of random voltage fluctuations and the low-density residual conductivity of graphene, arXiv Url: cond-mat/0702117 Google Scholar
  31. F. D. M. Haldane: Model for a quantum {H}all effect without {L}andau levels: Condensed-matter realization of the ''parity anomaly``, Phys. Rev. Lett. 61, 2015 (1988) Google Scholar
  32. Y. S. Zheng, T. Ando: Hall conductivity of a two-dimensional graphite system, Phys. Rev. B 65, 245420 (2002) Google Scholar
  33. M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, W. A. de Heer: Landau level spectroscopy of ultrathin graphite layers, Phys. Rev. Lett. 97, 266405 (2006) Google Scholar
  34. Z. Jiang, E. A. Henriksen, L. C. Tung, Y.-J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, H. L. Stormer: Infrared spectroscopy of {L}andau levels of graphene, Phys. Rev. Lett. 98, 197403 (2007) Google Scholar
  35. R. S. Deacon, K.-C. Chuang, R. J. Nicholas, K. S. Novoselov, A. K. Geim: Cyclotron resonance study of the electron and hole velocity in graphene monolayers, Phys. Rev. B 76 (8), 081406 (2007) Google Scholar
  36. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim: Room-temperature quantum {H}all effect in graphene, Science 315, 1379 (2007) Google Scholar
  37. M. Berry: Quantal phase-factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392, 45 (1984) Google Scholar
  38. D. Shoenberg: Magnetic Oscillations in Metals (Cambridge University Press, Cambridge 1984) Google Scholar
  39. Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y. W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, P. Kim: Landau-level splitting in graphene in high magnetic fields, Phys. Rev. Lett. 96, 136806 (2006) Google Scholar
  40. D. A. Abanin, K. S. Novoselov, U. Zeitler, P. A. Lee, A. K. Geim, L. S. Levitov: Dissipative quantum {H}all effect in graphene near the {D}irac point, Phys. Rev. Lett. 98, 196806 (2007) Google Scholar
  41. K. Yang: Spontaneous symmetry breaking and quantum {H}all effect in graphene, Solid State Comm. 143, 27 (2007) Google Scholar
  42. K. Nakada, M. Fujita, G. Dresselhaus, M. S. Dresselhaus: Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54, 17954 (1996) Google Scholar
  43. K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist: Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 59, 8271 (1999) Google Scholar
  44. Y. Miyamoto, K. Nakada, M. Fujita: First-principles study of edge states of {H}-terminated graphitic ribbons, Phys. Rev. B 59, 9858 (1999) Google Scholar
  45. T. Kawai, Y. Miyamoto, O. Sugino, Y. Koga: Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities, Phys. Rev. B 62, R16349 (2000) Google Scholar
  46. S. Okada, A. Oshiyama: Magnetic ordering in hexagonally bonded sheets with first-row elements, Phys. Rev. Lett. 87, 146803 (2001) Google Scholar
  47. H. Lee, Y.-W. Sun, N. Park, S. Han, J. Yu: Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states, Phys. Rev. B 72, 174431 (2005) Google Scholar
  48. M. Ezawa: Peculiar width dependence of the electronic properties of carbon nanoribbons, Phys. Rev. B 73, 045432 (2006) Google Scholar
  49. L. Brey, H. A. Fertig: Electronic states of graphene nanoribbons studied with the {D}irac equation, Phys. Rev. B 73, 235411 (2006) Google Scholar
  50. K.-I. Sasaki, S. Murakami, R. Saito: J. Phys. Soc. Jpn. 75, 074713 (2006) Google Scholar
  51. D. A. Abanin, P. A. Lee, L. S. Levitov: Spin-filtered edge states and quantum {H}all effect in graphene, Phys. Rev. Lett. 96, 176803 (2006) Google Scholar
  52. Y.-W. Son, M. L. Cohen, S. G. Louie: Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97, 216803 (2006) Google Scholar
  53. Y.-W. Son, M. L. Cohen, S. G. Louie: Erratum: {E}nergy gaps in graphene nanoribbons, Phys. Rev. Lett. 98, 089901 (2007) Google Scholar
  54. Y.-W. Son, M. L. Cohen, S. G. Louie: Half-metallic graphene nanoribbons, Nature 444, 347 (2006) Google Scholar
  55. Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Y. Kaburagi: Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Phys. Rev. B 71, 193406 (2005) Google Scholar
  56. C. L. Kane, E. J. Mele: Z(2) topological order and the quantum spin {H}all effect, Phys. Rev. Lett. 95, 146802 (2005) Google Scholar
  57. D. Prezzi, D. Varasano, A. Ruini, E. Molinari: Optical properties of graphene nanoribbons: {T}he role of many-body effects, arXiv:0706.0916 (2007) Google Scholar
  58. M. Y. Han, B. Özyilmaz, Y. Zhang, P. Kim: Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98, 206805 (2007) Google Scholar
  59. Z. Chen, Y.-M. Lin, M. J. Rooks, P. Avouris: Graphene nano\hyp{}ribbon electronics, URL: cond-mat/0701599 arXiv Google Scholar
  60. F. {Cervantes-Sodi}, G. Csanyi, S. Piscanec, A. C. Ferrari: Edge functionalised and substitutional doped graphene nanoribbons: electronic and spin properties, Cond Mat 0711.2340 (2007) Google Scholar
  61. G. Dresselhaus, M. S. Dresselhaus: Spin-orbit interaction in graphite, Phys. Rev. 140, 401 (1965) Google Scholar
  62. J.-C. Charlier, X. Gonze, J.-P. Michenaud: First-principles study of the electronic properties of graphite, Phys. Rev. B 43, 4579 (1991) Google Scholar
  63. J.-C. Charlier, X. Gonze, J.-P. Michenaud: First-principles study of the electronic properties of simple hexagonal graphite, Phys. Rev. B 46, 4531 (1992) Google Scholar
  64. J.-C. Charlier, X. Gonze, J.-P. Michenaud: First-principles study of the stacking effect on the electronic properties of graphite(s), Carbon 32, 289–299 (1994) Google Scholar
  65. J.-C. Charlier, X. Gonze, J.-P. Michenaud: Graphite interplanar bonding: electronic delocalization and van der {W}aals interaction, Europhys. Lett. 28, 403–408 (1994) Google Scholar
  66. S. Latil, L. Henrard: Charge carriers in few-layer graphene films, Phys. Rev. Lett. 97, 036803 (2006) Google Scholar
  67. F. Guinea, A. H. Castro-Neto, N. M. R. Peres: Electronic states and {L}andau levels in graphene stacks, Phys. Rev. B 73, 245426 (2006) Google Scholar
  68. J.-C. Charlier, J.-P. Michenaud, P. Lambin: Tight-binding density of electronic states of pregraphitic carbon, Phys. Rev. B 46, 4540 (1992) Google Scholar
  69. E. McCann, V. I. Fal'ko: Landau-level degeneracy and quantum {H}all effect in a graphite bilayer, Phys. Rev. Lett. 96, 086805 (2006) Google Scholar
  70. E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. L. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, A. H. Castro-Neto: Biased bilayer graphene: {S}emiconductor with a gap tunable by electric field effect, URL: cond-mat/0611342 arXiv Google Scholar
  71. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, A. C. Ferrari: Rayleigh imaging of graphene and graphene layers, Nano Lett. 7, 2711 (2007) Google Scholar
  72. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim: Raman spectrum of graphene and graphene layers, Phys. Rev. 97, 187401 (2006) Google Scholar
  73. A. C. Ferrari, J. Robertson: Raman spectroscopy in carbons: From nanotubes to diamond, Philos. Trans. Roy. Soc. A 362, 2267–2565 (2004) Google Scholar
  74. C. Castiglioni, F. Negri, M. Rigolio, G. Zerbi: Raman activation in disordered graphites of the {A}1 ' symmetry forbidden k \neq 0 phonon: The origin of the {D} line, J. Chem. Phys. 115, 3769 (2001) Google Scholar
  75. C. Castiglioni, M. Tommasini, G. Zerbi: Raman spectroscopy of polyconjugated molecules and materials: {C}onfinement effect in one and two dimensions, Philos. Trans. R. Soc. Lond. A 362, 2425 (2004) Google Scholar
  76. F. Tuinstra, J. Koenig.: Raman spectrum of graphite, J. Chem. Phys. 53, 1126 (1970) Google Scholar
  77. A. C. Ferrari, J. Robertson: Interpretation of {R}aman spectra of disordered and amorphous carbon, Phys. Rev. B 61, 14095 (2000) Google Scholar
  78. R. J. Nemanich, S. A. Solin: First- and second-order {R}aman scattering from finite-size crystals of graphite, Phys. Rev. B 20, 392 (1979) Google Scholar
  79. R. Al-Jishi, G. Dresselhaus: Lattice-dynamical model for graphite, Phys. Rev. B, 26, 4514 (1982) Google Scholar
  80. R. P. Vidano, D. B. Fishbach, L. J. Willis, T. M. Loehr: Observation of {R}aman band shifting with excitation wavelength for carbons and graphites, Solid State Commun. 39, 341 (1981) Google Scholar
  81. I. Pocsik, M. Hundhausen, M. Koos, L. Ley: {DC} electrical properties of amorphous carbon with different bonding hybridization, J. Non-Cryst. Solids 227–230, 1087 (1998) Google Scholar
  82. P. Lespade, A. Marchard, M. Couzi, F. Cruege: Caracterisation de materiaux carbones par microspectrometrie {R}aman, Carbon 22, 375 (1984) Google Scholar
  83. C. Thomsen, S. Reich: Double resonant {R}aman scattering in graphite, Phys. Rev. Lett. 85, 5214 (2000) Google Scholar
  84. A. V. Baranov, A. N. Bekhterev, Y. S. Bobovich, V. I. Petrov: Interpretation of some peculiarities in {R}aman spectra of graphite and glassy carbon, Opt. Spektrosk. 62, 1036 (1987) Google Scholar
  85. J. Maultzsch, S. Reich, C. Thomsen, H. Requardt: Phonon dispersion in graphite, P. Ordej{\'o}n. Phys. Rev. Lett. 92, 075501 (2004) Google Scholar
  86. M. J. Matthews, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, M. Endo: Origin of dispersive effects of the {R}aman {D} band in carbon materials, Phys. Rev. B 59, 6585 (1999) Google Scholar
  87. A. Gruneis, R. Saito, T. Kimura, L. G. Can{ç}ado, M. A. Pimenta, A. Jorio, A. G. S. Filho, G. Dresselhaus, M. S. Dresselhaus: Determination of two-dimensional phonon dispersion relation of graphite by {R}aman spectroscopy, Phys. Rev. B 65, 155405 (2002) Google Scholar
  88. R. Saito, A. Jorio, A. G. S. Filho, G. Dresselhaus, M. S. Dresselhaus, M. A. Pimenta: Probing phonon dispersion relations of graphite by double resonance {R}aman scattering, Phys. Rev. Lett. 88, 027401 (2002) Google Scholar
  89. A. C. Ferrari, J. Robertson.: Resonant {R}aman spectroscopy of disordered, amorphous, and diamondlike carbon, Phys. Rev. B, 64, 075414 (2001) Google Scholar
  90. C. Mapelli, C. Castiglioni, G. Zerbi, K. Mullen: Common force field for graphite and polycyclic aromatic hydrocarbons, Phys. Rev. B 60, 12710 (1999) Google Scholar
  91. G. Kresse, J. Furthmuller, J. Hafner: Ab initio force constant approach to phonon dispersion relations of diamond and graphite, Europhys. Lett. 32, 729 (1995) Google Scholar
  92. P. Pavone, R. Bauer, K. Karch, O. Sch{ü}tt, S. Vent, W. Windl, D. Strauch, S. Baroni, S. de Gironcoli: Ab initio phonon calculations in solids, Physica B, 219–220, 439 (1996) Google Scholar
  93. L. Wirtz, A. Rubio: The phonon dispersion of graphite revisited, Solid. State Commun. 131, 141 (2004) Google Scholar
  94. O. Dubay, G. Kresse: Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes, Phys. Rev. B 67, 035401 (2003) Google Scholar
  95. W. Kohn: Image of the {F}ermi surface in the vibration spectrum of a metal, Phys. Rev. Lett. 2, 393 (1959) Google Scholar
  96. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. Dai: High-field quasiballistic transport in short carbon nanotubes, Phys. Rev. Lett. 92, 106804 (2004) Google Scholar
  97. J. Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T. A. Arias, P. W. Brouwer, P. L. McEuen: Electron–phonon scattering in metallic single-walled carbon nanotubes, Nano Lett. 4, 517 (2004) Google Scholar
  98. V. Perebeinos, J. Tersoff, P. Avouris: Electron–phonon interaction and transport in semiconducting carbon nanotubes, Phys. Rev. Lett. 94, 086802 (2005) Google Scholar
  99. Z. Yao, C. L. Kane, C. Dekker: High-field electrical transport in single-wall carbon nanotubes, Phys. Rev. Lett. 84, 2941 (2000) Google Scholar
  100. J. Jiang, R. Saito, A. Gruneis, G. Dresselhaus, M. S. Dresselhaus: Electron–phonon interaction and relaxation time in graphite, Chem. Phys. Lett. 392, 383 (2004) Google Scholar
  101. J. Jiang, R. Saito, A. Gr{ü}neis, S. G. Chou, G. G. Samsonidze, A. Jorio, G. Dresselhaus, M. S. Dresselhaus: Photoexcited electron relaxation processes in single-wall carbon nanotubes, Phys. Rev. B 71, 045417 (2005) Google Scholar
  102. G. Pennington, N. Goldsman: Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes, Phys. Rev. B 68, 045426 (2004) Google Scholar
  103. G. D. Mahan: Electron–optical phonon interaction in carbon nanotubes, Phys. Rev. B 68, 125409 (2003) Google Scholar
  104. P. H. Tan, C. Y. Hu, J. Dong, W. C. Shen, B. F. Zhang: Polarization properties, high-order {R}aman spectra, and frequency asymmetry between {S}tokes and anti-{S}tokes scattering of {R}aman modes in a graphite whisker, Phys. Rev B 64, 214301 (2000) Google Scholar
  105. V. Scardaci, P. H. Tan, A. C. Ferrari, et al.: unpublished Google Scholar
  106. M. Lazzeri, F. Mauri: Nonadiabatic {K}ohn anomaly in a doped graphene monolayer, Phys. Rev. Lett. 97, 266407 (2006) Google Scholar
  107. A. Gupta, P. C. Eklund: unpublished Google Scholar
  108. Y. Wang, D. C. Aolsmeyer, R. L. McCreery: Raman spectroscopy of carbon materials: {S}tructural basis of observed spectra, Chem. Mater. 2, 557 (1990) Google Scholar
  109. A. Gupta, P. C. Eklund: unpublished Google Scholar
  110. P. H. Tan, C. Casiraghi, A. C. Ferrari: unpublished Google Scholar
  111. J. Yan, Y. Zhang, P. Kim, A. Pinczuk: Electric field effect tuning of electron–phonon coupling in graphene, Phys. Rev. Lett. 98, 166802 (2007) Google Scholar
  112. T. Ando: Anomaly of optical phonon in monolayer graphene, J. Phys. Soc. Jpn. 75, 124701 (2006) Google Scholar
  113. A. H. Castro-Neto, F. Guinea.: Electron–phonon coupling and {R}aman spectroscopy in graphene, Phys. Rev. B 75, 045404 (2007) Google Scholar
  114. G. Moos, C. Gahl, R. Fasel, M. Wolf, T. Hertel: Anisotropy of quasiparticle lifetimes and the role of disorder in graphite from ultrafast time-resolved photoemission spectroscopy, Phys. Rev. Lett. 87, 267402 (2001) Google Scholar
  115. T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, M. Wolf: Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite, Phys. Rev. Lett. 95, 187403 (2005) Google Scholar
  116. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P. C. Eklund: Raman scattering from high-frequency phonons in supported n-graphene layer films, Nano Lett. 6, 2667 (2006) Google Scholar
  117. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz: Spatially resolved {R}aman spectroscopy of single- and few-layer graphene, Nano Lett. 7, 238 (2007) Google Scholar
  118. C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim, A. C. Ferrari: Raman fingerprint of charged impurities in graphene, Cond-Mat 0709.2566 (2007) Google Scholar
  119. C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim, A. C. Ferrari: Raman fingerprint of charged impurities in graphene, Appl. Phys. Lett. in press. Google Scholar
  120. A. Das, S. Pisana, S. Piscanec, B. Chakraborty, S. K. Saha, U. V. Waghmare, R. Yiang, H. R. Krishnamurhthy, A. K. Geim, A. C. Ferrari, A. K. Sood: Electrochemically gated graphene: Monitoring dopants by {R}aman scattering, cond mat 0709.1174 (2007) Google Scholar
  121. V. Zolyomi, J. Kurti: First-principles calculations for the electronic band structures of small diameter single-wall carbon nanotubes, Phys. Rev. B, 70, 085403 (2004) Google Scholar
  122. D. Conn\'etable, D., G.-M. Rignanese, J.-C. Charlier, X. Blase: Room temperature {P}eierls distortion in small diameter nanotubes, Phys. Rev. Lett. 94, 015503 (2005) Google Scholar
  123. A. Jorio, R. Saito, M. S. Dresselhaus, G. Dressselhaus: One contribution of 13 to a theme '{R}aman spectroscopy in carbons: from nanotubes to diamond', Trans. Roy. Soc. A 362, 2311 (2004) Google Scholar
  124. S. D. M. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus, R. Saito, K. Kneipp: Origin of the {B}reit–{W}igner–{F}ano lineshape of the tangential g-band feature of metallic carbon nanotubes, Phys. Rev. B 63, 155414 (2001) Google Scholar
  125. K. Kempa: Gapless plasmons in carbon nanotubes and their interactions with phonons, Phys. Rev. B 66, 195406 (2002) Google Scholar
  126. U. Fano: Effects of configuration interaction on intensities and phase shifts, Phys. Rev. 124, 1866 (1961) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • J.-C. Charlier
    • 1
  • P. C. Eklund
    • 2
  • J. Zhu
    • 2
  • A. C. Ferrari
    • 3
  1. 1.Unité de Physico-Chimie et de Physique des MatériauxUniversitéCatholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Department of PhysicsThe Pennsylvania State UniversityUSA
  3. 3.Engineering DepartmentCambridge UniversityCambridgeUK

Personalised recommendations