Inorganic Nanotubes and Fullerene-Like Structures (IF)

  • R. TenneEmail author
  • M. Remškar
  • A. Enyashin
  • G. Seifert
Part of the Topics in Applied Physics book series (TAP, volume 111)


Back in 1992 it was proposed that nanoparticles of layered compounds will beunstable against folding and will close up into fullerene-like structures (IF) andnanotubes. In the years that followed nanotubes and fullerene-like structureswere synthesized from numerous compounds with layered structure. Morerecently, crystalline and noncrystalline nanotubes of compounds with a 3D, i.e.,quasi-isotropic lattice have been intensively investigated. In view of their eminentapplications potential, much effort and substantial progress has been achieved inthe scaling-up of the synthesis of inorganic nanotubes and fullerene-likenanoparticles of WS2 and MoS2 and also other compounds. Early on it wassuggested that hollow nano-octahedra consisting of a few hundred MoS2moieties make the true analogs of C60, etc. This notion has been advancedconsiderably in recent years through a combined experimental–theoreticaleffort.Substantial progress has been accomplished in the use of such nanoparticlesfor tribological applications and lately for impact resilient nanocomposites.These tests indicated that IF-MoS2 and IF-WS2 are heading for large-scaleapplications in the automotive, machining, aerospace, electronics, defense, medicaland numerous other kinds of industries. A few products based on thesenanoparticles have been recently commercialized by “ApNano Materials, Inc”(“NanoMaterials, Ltd.”, see also Most recently, a manufacturingfacility for the commercialization of these nanomaterials has been erectedand sales of the product started. Novel applications of inorganic nanotubesand fullerene-like nanoparticles in the fields of catalysis; microelectronics;Li rechargeable batteries; medical and optoelectronics will be discussed.


Boron Nitride Transmission Electron Micro Titanate Nanotubes Boron Nitride Nanotubes Scanning Electron Microcopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. Tenne: Inorganic nanotubes and fullerene-like nanoparticles (2006) Google Scholar
  2. M. Remskar: Inorganic nanotubes, Adv. Mater. 16, 1497–1504 (2004) Google Scholar
  3. A. N. Enyashin, S. Gemming, G. Seifert: Simulation of Inorganic Nanotubes (Springer, Berlin, Heidelberg 2006) Google Scholar
  4. F. Cheng, J. Chen: Storage of hydrogen and lithium in inorganic nanotubes and nanowires, J. Mater. Res. 21, 2744–2757 (2006) Google Scholar
  5. C. N. R. Rao, M. Nath: Inorganic nanotubes, Dalton Trans. 1, 1–25 (2003) Google Scholar
  6. B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, C. N. R. Rao: Oxide nanotubes prepared using carbon nanotubes as templates, J. Mater. Res. 12, 604–606 (1997) Google Scholar
  7. M. E. Spahr, P. Bitterli, R. Nesper, M. Müller, F. Krumeich, H. U. Nissen: Redox-active nanotubes of vanadium oxide, Angew. Chem. Int. Ed. Engl. 37, 1263–1265 (1998) Google Scholar
  8. G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, L. M. Peng: Preparation and structure analysis of titanium oxide nanotubes, Appl. Phys. Lett. 79, 3702–3704 (2001) Google Scholar
  9. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, M. Aucouturier: Structure and physicochemistry of anodic oxide films on titanium and {TA6V} alloy, Surf. Interface Anal. 27, 629–637 (1999) Google Scholar
  10. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey: Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res 16, 3331–3334 (2001) Google Scholar
  11. R. Beranek, H. Hildebrand, P. Schmuki: Self-organized porous titanium oxide prepared in {H_2SO_4/HF} electrolytes, Electrochem. Solid-State Lett. 6, B12–B14 (2003) Google Scholar
  12. G. Seifert, T. Köhler, R. Tenne: Stability of metal chalcogenide nanotubes, J. Phys. Chem. B 106, 2497–2501 (2002) Google Scholar
  13. R. Tenne, L. Margulis, M. Genut, G. Hodes: Polyhedral and cylindrical structures of {Tungsten} disulphide, Nature 360, 444–445 (1992) Google Scholar
  14. L. Margulis, G. Salitra, R. Tenne, M. Talianker: Nested fullerene-like structures, Nature 365, 113–114 (1993) Google Scholar
  15. Y. Feldman, E. Wasserman, D. J. Srolovitz, R. Tenne: High rate gas phase growth of {MoS}2 nested inorganic fullerene-like and nanotubes, Science 267, 222–225 (1995) Google Scholar
  16. A. Rubio, J. L. Corkill, M. L. Cohen: Theory of graphitic boron nitride nanotubes, Phys. Rev. B 49, 5081–5084 (1994) Google Scholar
  17. N. G. Chopra, J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl: Boron-nitride nanotubes, Science 269, 966–967 (1995) Google Scholar
  18. E. J. M. Hamilton, S. E. Dolan, C. M. Mann, H. O. Colijn, C. A. McDonald, S. G. Shore: Science 260, 659 (1993) Google Scholar
  19. F. Jensen, H. Toftlund: Structure and stablitity of {C}24 and {B}12{N}12 isomers, Chem. Phys. Lett. 201, 95–98 (1993) Google Scholar
  20. O. Stéphan, Y. Bando, A. Loiseau, F. Willaime, N. Shramchenko, T. Tamiya, T. Sato: Formation of small single-layer and nested {BN} cages under electron irradiation of nanotubes and bulk material, Appl. Phys. A 67, 107–111 (1998) Google Scholar
  21. R. R. Chianelli, E. B. Prestridge, T. A. Pecorano, J. P. DeNeufville: Molybdenum disuflide in the poorly crystalline ``rag'' structure, Science 203, 1105–1107 (1979) Google Scholar
  22. J. V. Sanders: High-resolution electron microscopy of some catalytic particles, Chem. Scr. 14, 141–145 (1979) Google Scholar
  23. J. V. Sanders: Structure of catalytic particles, Ultramicroscopy 20, 33–37 (1986) Google Scholar
  24. L. Vayssieres, K. Keis, A. Hagfeldt, S.-E. Lindquist: Three-dimensional array of highly oriented crystalline {ZnO} microtubes, Chem. Mater. 13, 4395–4398 (2001) Google Scholar
  25. Y. Sun, G. M. Fuge, N. A. Fox, D. J. Riley, M. N. R. Ashfold: Synthesis of aligned arrays of ultrathin {ZnO} nanotubes on a {Si} wafer coated with a thin {ZnO} film, Adv. Mater. 17, 2477–2481 (2005) Google Scholar
  26. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, P. Yang: Single-crystal gallium nitride nanotubes, Nature 422, 599–602 (2003) Google Scholar
  27. Y. Li, Y. Bando, D. Golberg: Single-crystalline {In2O3} nanotubes filled with {In}, Adv. Mater. 15, 581–585 (2003) Google Scholar
  28. R. Tenne, A. Zettl: Nanotubes from inorganic materials, in M. S. Dresselhaus, P. Avouris (Eds.): Carbon Nanotubes, Top. Appl. Phys. 80 (Springer, Berlin, Heidelberg 2000) pp. 81–112 Google Scholar
  29. N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, G. A. J. Amaratunga, M. Naito, T. Kanki: Fabrication of inorganic molybdenum disulfide fullerenes by arc in water, Chem. Phys. Lett. 368, 331–337 (2003) Google Scholar
  30. J. J. Hu, J. S. Zabinski: Nanotribology and lubrication mechanisms of inorganic fullerene-like {MoS}2 nanoparticles investigated using lateral force microscopy ({LFM}), Tribol. Lett. 18, 173–180 (2005) Google Scholar
  31. D. M. D. J. Singh, T. Pradeep, J. Bhattacharjee, U. V. Waghmare: Novel cage clusters of {MoS2} in the gas phase, J. Phys. Chem. A 109, 7339–7342 (2005) Google Scholar
  32. R. Sen, A. Govindaraj, K. Suenaga, S. Suzuki, H. Kataura, S. Iijima, Y. Achiba: Encapsulated and hollow closed-cage structures of {WS2} and {MoS2} prepared by laser ablation at 450–\unit{1050}{\celsius}, Chem. Phys. Lett. 340, 242–248 (2001) Google Scholar
  33. P. A. Parilla, A. C. Dillon, B. A. Parkinson, K. M. Jones, J. Alleman, G. Riker, D. S. Ginley, M. J. Heben: Formation of nanooctahedra in molybdenum disulfide and molybdenum diselenide using pulsed laser vaporization, J. Phys. Chem. B 108, 6197–6207 (2004) Google Scholar
  34. A. N. Enyashin, S. Gemming, M. Bar-Sadan, R. Popovitz-Biro, S. Y. Hong, Y. Prior, R. Tenne, G. Seifert: Structure and stability of molybdenum sulfide fullerenes, Angew. Chem. Intl. Ed. 46, 623–627 (2007) Google Scholar
  35. C. Ducati, E. Barborini, S. Vinati, P. Milani, P. A. Midgley: Titanium fullerenoid oxides, Appl. Phys. Lett. 87, 201906 (2005) Google Scholar
  36. A. Albu-Yaron, T. Arad, R. Popovitz-Biro, M. Bar-Sadan, Y. Prior, M. Jansen, R. Tenne: Closed-cage (fullerene-like) structures of {Cs2O}, Angew. Chem. Intl. Ed. 44, 4169–4172 (2005) Google Scholar
  37. A. Albu-Yaron, T. Arad, R. Tenne, M. Levy, R. Popovitz-Biro, J. M. Gordon, D. Feuermann, E. A. Katz, M. Jansen, C. Mühle: Synthesis of fullerene-like {Cs2O} nanoparticles by concentrated sunlight, Adv. Mater. 18, 2993–2996 (2006) Google Scholar
  38. M. J. Yacaman, H. Lopez, P. Santiago, D. H. Galvan, I. L. Garzon, A. Reyes: Studies of {{MoS2}} structures produced by electron irradiation, Appl. Phys. Lett. 69, 1065–1067 (1996) Google Scholar
  39. R. Popovitz-Biro, A. Twersky, Y. R. Hacohen, R. Tenne: Nanoparticles of {CdCl2} with closed cage structure, Isr. J. Chem. 41, 7–14 (2001) Google Scholar
  40. R. Popovitz-Biro, N. Sallacan, R. Tenne: {CdI2} nanoparticles with closed-cage (fullerene-like) structures, J. Mater. Chem. 13, 1631–1634 (2003) Google Scholar
  41. Y. Prior, R. Tenne, M. Bar-Sadan, R. Popovitz-Biro: Closed-cage (fullerene-like) structures of {NiBr2}, Mater. Res. Bull. 41, 2137–2146 (2006) Google Scholar
  42. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara: Formation of titanium oxide nanotube, Langmuir 14, 3160–3163 (1998) Google Scholar
  43. G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, L. M. Peng: Preparation and structure analysis of titanium oxide nanotubes, Appl. Phys. Lett. 79, 3702–3704 (2001) Google Scholar
  44. S. Zhang, L.-M. Peng, Q. Chen, G. H. Du, G. Dawson, W. Z. Zhou: Formation mechanism of {H2Ti}3{O7} nanotubes, Phys. Rev. Lett. 91, 256103 (2003) Google Scholar
  45. H. Deng, J. Wang, Q. Peng, X. Wang, Y. Li: Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes, Chem. Eur. J. 11, 6519–6524 (2005) Google Scholar
  46. D. Chen, K. Tang, Z. Liang, Y. Liu, H. Zheng: Fabrication of {PbCrO_4} nanostructures: {From} nanotubes to nanorods, Nanotechnology 16, 2619–2624 (2005) Google Scholar
  47. S. V. Krivovichev, V. Kahlenberg, R. Kaindl, E. Mersdorf, I. G. Tananaev, B. F. Myasoedov: Nanoscale tubules in uranyl selenates, Angew. Chem. Int. Ed. 44, 1134–1136 (2005) Google Scholar
  48. Z. Yin, Y. Sakamoto, J. Yu, S. Sun, O. Terasaki, R. Xu: Microemulsion-based synthesis of titanium phosphate nanotubes via amine extraction system, J. Am. Chem. Soc. 126, 8882–8883 (2004) Google Scholar
  49. A. Ghicov, S. Aldabergenova, H. Tsuchyia, P. Schmuki: {TiO2}–{Nb2O}5 nanotubes with electrochemically tunable morphologies, Angew. Chem. Intl. Ed. 45, 6993–6996 (2006) Google Scholar
  50. S. Chou, F. Cheng, J. Chen: Electrochemical deposition of {Ni(OH)}2 and {Fe}-doped {Ni(OH)}2 tubes, Eur. J. Inorg. Chem. pp. 4035–4039 (2005) Google Scholar
  51. S. J. Son, S. B. Lee: Controlled gold nanoparticle diffusion in nanotubes: {Platfom} of partial functionalization and gold capping, J. Am. Chem. Soc. 128, 15974–15975 (2006) Google Scholar
  52. C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu: Design and tailoring of the nanotubular arrayed architecture of hydrous {RuO2} for next generation supercapacitors, Nano Lett. 6, 2690–2695 (2006) Google Scholar
  53. B. A. Hernandez-Sanchez, K.-S. Chang, M. T. Scancella, J. L. Burris, S. Kohli, E. R. Fisher, P. K. Dorhout: Examination of size-induced ferroelectric phase transitions in template synthesized {PbTiO3} nanotubes and nanofibers, Chem. Mater. 17, 5909–5919 (2005) Google Scholar
  54. N. A. Dhas, K. S. Suslick: Sonochemical preparation of hollow nanospheres and hollow nanocrystals, J. Am. Chem. Soc. 127, 2368–2369 (2005) Google Scholar
  55. B. Yang, C. Li, H. Hu, X. Yang, Q. Li, Y. Qian: A room-temperature route to bismuth nanotube arrays, Eur. J. Inorg. Chem. pp. 3699–3702 (2003) Google Scholar
  56. C. Schuffenhauer, R. Popovitz-Biro, R. Tenne: Synthesis of {NbS2} nanoparticles with (nested) fullerene-like structure ({IF}), J. Mater. Chem. 12, 1587–1591 (2002) Google Scholar
  57. F. L. Deepak, A. Margolin, M. Bar-Sadan, R. Popovitz-Biro, R. Tenne: {{MoS2}} fullerene-like structures and nanotubes using the gas phase reaction with {MoCl5}, Nano 1, 167–180 (2006) Google Scholar
  58. X.-L. Li, J.-P. Ge, Y.-D. Li: Atmospheric pressure chemical vapor deposition: an alternative route to large-scale {{MoS2}} and {WS2 inorganic} fullerene-like nanostructures and nanoflowers, Chem. Eur. J. 10, 6163–6171 (2004) Google Scholar
  59. J. Etzkorn, H. A. Therese, F. Rocker, N. Zink, U. Kolb, W. Tremel: Metal-organic chemical vapor deposition synthesis of hollow inorganic-fullerene-type {{MoS2}} and {MoSe2} nanoparticles, Adv. Mater. 17, 2372–2375 (2005) Google Scholar
  60. J. Chen, S.-L. Li, Z.-L. Tao, F. Gao: Low-temperature synthesis of titanium disulfide nanotubes, Chem. Commun. pp. 980–981 (2003) Google Scholar
  61. J. Chen, Z. L. Tao, S. L. Li: Lithium intercalation in open-ended {TiS2} nanotubes, Angew. Chem. Intl. Ed. 42, 2147–2151 (2003) Google Scholar
  62. S. Bastide, D. Duphil, J.-P. Borra, C. Lévy-Clément: {WS2} closed nanoboxes synthesized by spray pyrolysis, Adv. Mater. 18, 106–109 (2006) Google Scholar
  63. D. J. Brooks, R. E. Douthwaite, R. Brydson, C. Calvert, M. G. Measures, A. Watson: Synthesis of inorganic fullerene ({MS2} {M=Zr,Hf and W}) phases using {H2S} and {N2}/{H2} microwave-induced plasmas, Nanotechnology 17, 1245–1250 (2006) Google Scholar
  64. C. D. Malliakas, M. G. Kanatzidis: Inorganic single wall nanotubes of {SbPS}4-x{Se}x (0<x<3) with tunable band gap, J. Am. Chem. Soc. 128, 6538–6539 (2006) Google Scholar
  65. M. Brorson, T. W. Hansen, C. J. H. Jacobsen: Rhenium{(IV)} sulfide nanotubes, J. Am. Chem. Soc. 124, 11582–11583 (2002) Google Scholar
  66. L.-W. Yin, Y. Bando, D. Golberg, M.-S. Li: Growth of single-crystal indium nitride nanotubes and nanowires by a controlled-carboridation reaction route, Adv. Mater. 16, 1833–1838 (2004) Google Scholar
  67. J. Zhan, Y. Bando, J. Hu, L. Yin, X. Yuan, T. Sekiguchi, D. Golberg: Hollow and polygonous microtubes of monocrystalline indium germanate, Angew. Chem. Int. Ed. 45, 228–231 (2006) Google Scholar
  68. H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, U. Goesele: Monocrystalline spinel nanotube fabrication based on the {Kirkendall} effect, Nature Mater. 5, 627–631 (2006) Google Scholar
  69. H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Goesele, M. Zacharias: Single-crystalline {MgAl2O}4 spinel nanotubes using a reactive and removable {MgO} nanowire template, Nanotechnology 17, 5157–5162 (2006) Google Scholar
  70. Z. Yang, Y. Gu, L. Chen, L. Shi, J. Ma, Y. Qian: Preparation of {Mn5Si}3 nanocages and nanotubes by molten salt flux, Solid State Commun. 130, 347–351 (2004) Google Scholar
  71. J. A. Jaszczak: Mesomolecules: From Molecules to Materials, vol. 1 (Chapman & Hall 1995) Google Scholar
  72. G. G. Tibbetts: Why are carbon filaments tubular, J. Cryst. Growth 66, 632–638 (1983) Google Scholar
  73. G. Seifert, T. Frauenheim: On the stability of non carbon nanotubes, J. Korean Phys. Soc. 37, 89–92 (2000) Google Scholar
  74. V. V. Ivanovskaya, G. Seifert: Tubular structures of titanium disulfide {TiS_2}, Solid State Commun. 130, 175–180 (2004) Google Scholar
  75. T. Köhler, T. Frauenheim, Z. Hajnal, G. Seifert: Tubular structures of {GaS}, Phys. Rev. B 69, 193403 (2004) Google Scholar
  76. G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim: Structure and electronic properties of {{MoS2}} nanotubes, Phys. Rev. Lett. 85, 146–149 (2000) Google Scholar
  77. I. Milosevi\'c, T. Vukovi\'c, M. Damnjanovi\'c, B. Nikoli\'c: Symmetry based properties of the transition metal dichalcogenide nanotubes, Eur. Phys. J. B 17, 707–712 (2000) Google Scholar
  78. C. C. Han, M. Y. Bai, J. T. Lee: A new and easy method for making {Ni} and {Cu} microtubules and their regularly assembled structures, Chem. Mater. 13, 4260–4268 (2001) Google Scholar
  79. M. Remskar, A. Mrzel, F. Levy: Perspectives of fullerene nanotechnology, in E. Osawa (Ed.): International Fullerenes Workshop (Kluwer, Dordrecht, Boston, London 2001) Google Scholar
  80. M. Virsek, A. Jesih, I. Milosevic, M. Damnjanovic, M. Remskar: Raman scattering of the {MoS_2} and {WS_2} single nanotubes, Surf. Sci. 601, 2868–2872 (2007) Google Scholar
  81. M. Remskar, Z. Skraba, P. Stadelmann, F. Levy: Structural stabilization of new compounds: {MoS_2} and {WS_2} micro- and nanotubes alloyed with gold and silver, Adv. Mater. 12, 814–818 (2000) Google Scholar
  82. A. Mrzel, M. Remskar, D. Mihailovic: New organic-inorganic crystals grown by self-arrangement of {C}-70, Synth. Met. 135–136, 725–726 (2003) Google Scholar
  83. Y. Q. Zhu, W. K. Hsu, S. Firth, M. Terrones, R. J. H. Clark, H. W. Kroto, D. R. M. Walton: Nb-doped {WS_2} nanotubes, Chem. Phys. Lett 342, 15–21 (2001) Google Scholar
  84. M. Remskar, A. Mrzel, A. Jesih, F. Lévy: Metal-alloyed {NbS_2} nanotubes synthesized by the self-assembly of nanoparticles, Adv. Mater. 14, 680–684 (2002) Google Scholar
  85. M. I. Mendelev, D. J. Srolovitz, S. A. Safran, R. Tenne: Equilibrium structure of multilayer van der {Waals} films and nanotubes, Phys. Rev. B 65, 075402 (2002) Google Scholar
  86. S. B. Fagan, R. J. Baierle, R. Mota, A. J. da Silva, A. Fazzio: Ab initio calculations for a hypothetical material: Silicon nanotubes, Phys. Rev. B 61, 9994–9996 (2000) Google Scholar
  87. R. Q. Zhang, S. T. Lee, C.-K. Law, W. K. Li, B. K. Teo: Silicon nanotubes: Why not?, Chem. Phys. Lett. 364, 251–258 (2002) Google Scholar
  88. M. Zhang, Y. H. Kan, Q. J. Zang, Z. M. Su, R. S. Wang: Why silicon nanotubes stably exist in armchair structure?, Chem. Phys. Lett. 379, 81–86 (2003) Google Scholar
  89. G. Seifert, T. Köhler, H. M. Urbassek, E. Hernandez, T. Frauenheim: Tubular structures of silicon, Phys. Rev. B 63, 193409 (2001) Google Scholar
  90. G. Seifert, T. Köhler, Z. Hajnal, T. Frauenheim: Tubular structures of germanium, Solid State Commun. 119, 653–657 (2001) Google Scholar
  91. S. Gemming, G. Seifert: Nanotube bundles from calcium disilicide: A density functional theory study, Phys. Rev. B 68, 075416 (2003) Google Scholar
  92. G. Seifert, E. Hernandez: Theoretical prediction of phosphorus nanotubes, Chem. Phys. Lett. 318, 355–360 (2000) Google Scholar
  93. C. Su, H.-T. Liu, J.-M. Li: Bismuth nanotubes: {Potential} semiconducting nanomaterials, Nanotechnology 13, 746–749 (2002) Google Scholar
  94. Y. Li, J. Wang, Z. Deng, Y. Wu, X. Sun, D. Yu, P. Yang: Bismuth nanotubes: {A} rational low-temperature synthetic route, J. Am. Chem. Soc. 123, 9904–9905 (2001) Google Scholar
  95. I. Boustani, A. Quandt, E. Hernandez, A. Rubio: New boron based nano­structured materials, J. Chem. Phys. 110, 3176–3185 (1999) Google Scholar
  96. J. Kunstmann, A. Quandt: Constricted boron nanotubes, Chem. Phys. Lett. 402, 21–26 (2005) Google Scholar
  97. L. A. Chernozatonskii: Diboride bifullerenes and binanotubes, JETP Lett. 74, 335–339 (2001) Google Scholar
  98. A. Quandt, A. Y. Liu, I. Boustani: Density-functional calculations for prototype metal-boron nanotubes, Phys. Rev. B 64, 125422 (2001) Google Scholar
  99. V. V. Ivanovskaya, A. N. Enyashin, A. A. Sofronov, Y. N. Makurin, N. I. Medvedeva, A. L. Ivanovskii: Quantum chemical simulation of the electronic structure and chemical bonding in (6,6), (11,11) and (20,0)-like metal-boron nanotubes, J. Mol. Struct. 625, 9–16 (2003) Google Scholar
  100. S. Guerini, P. Piquini: Theoretical investigation of {TiB_2} nanotubes, Microelectron. J. 34, 495 (2003) Google Scholar
  101. W. H. Moon, H. J. Hwang: Molecular-dynamics simulation of structure and thermal behaviour of boron nitride nanotubes, Nanotechnology 15, 431–434 (2004) Google Scholar
  102. T. Dumitrica, H. F. Bettinger, G. E. Scuseria, B. I. Yakobson: Thermodynamics of yield in boron nitride nanotubes, Phys. Rev. B 68, 085412 (2003) Google Scholar
  103. M. Zhao, Y. Xia, D. Zhang, L. M. Mei: Stability and electronic structure of {AlN} nanotubes, Phys. Rev. B 68, 235415 (2003) Google Scholar
  104. M. Zhao, Y. Xia, Z. Tan, X. D. Liu, F. Li, B. D. Huang, Y. J. Ji, L. M. Mei: Strain energy and thermal stability of single-walled aluminum nitride nanotubes from first-principles calculations, Chem. Phys. Lett. 389, 160–164 (2004) Google Scholar
  105. J. W. Kang, H. J. Hwang, K. O. Song, W. Y. Choi, K. R. Byun, O. K. Kwon, J. H. Lee, W. W. Kim: Structures, nanomechanics, and disintegration of single-walled gan nanotubes: Atomistic simulations, J. Korean Phys. Soc. 43, 372–380 (2003) Google Scholar
  106. Y.-R. Jeng, P.-C. Tsai, T. H. Fang: Molecular dynamics investigation of the mechanical properties of gallium nitride nanotubes under tension and fatigue, Nanotechnology 15, 1737–1744 (2004) Google Scholar
  107. V. V. Ivanovskaya, A. N. Enyashin, A. L. Ivanovskii: Nanotubes and fullerene-like molecules based on {TiO_2} and {ZrS_2}: Electronic structure and chemical bond, Russian J. Inorg. Chem. 49, 244–251 (2004) Google Scholar
  108. A. N. Enyashin, G. Seifert: Structure, stability and electronic properties of {TiO_2} nanostructures, Phys. Stat. Sol. B 242, 1361–1370 (2005) Google Scholar
  109. V. V. Ivanovskaya, A. N. Enyashin, A. A. Sofronov, Y. N. Makurin, N. I. Medvedeva, A. L. Ivanovskii: Electronic properties of single-walled {V_2O_5} nanotubes, Solid State Commun. 126, 489–493 (2003) Google Scholar
  110. G. Seifert, T. Frauenheim, T. Köhler, H. M. Urbassek: Tubular structures of siloxenes, Phys. Stat. Sol. B 225, 393–399 (2001) Google Scholar
  111. Y. R. Hacohen, R. Popovitz-Biro, Y. Prior, S. Gemming, G. Seifert, R. Tenne: Synthesis of {NiCl_2} nanotubes and fullerene-like structures by laser ablation: {Theoretical} considerations and comparison with {MoS_2} nanotubes, Phys. Chem. Chem. Phys. 5, 1644–1651 (2003) Google Scholar
  112. V. V. Ivanovskaya, A. N. Enyashin, N. I. Medvedeva, A. L. Ivanovskii: Electronic properties of {NiCl2} tubular nanostructures URL: cond-mat/0304230 (2003) Google Scholar
  113. I. Kaplan-Ashiri, S. R. Cohen, K. Gartsman, R. Rosentsveig, G. Seifert, R. Tenne: Mechanical behavior of {WS2} nanotubes, J. Mater. Res. 19, 454–459 (2004) Google Scholar
  114. I. Kaplan-Ashiri, S. R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Kanevsky, H. D. Wagner, R. Tenne: On the mechanical behavior of {WS_2} nanotubes under axial tension and compression, Proc. Natl. Acad. Sci. USA 103, 523–528 (2006) Google Scholar
  115. I. Kaplan-Ashiri, S. R. Cohen, N. Apter, Y. Wang, G. Seifert, H. D. Wagner, R. Tenne: J. Phys. Chem. C 111, 8432 (2007) Google Scholar
  116. Y. Wang, I. Kaplan-Ashiri, H. D. Wagner, R. Tenne, L.-M. Peng: unpublished Google Scholar
  117. J. L. Feldman: Elastic constants of {2H-MoS_2} and {2H-NBSe_2} extracted from measured dispersion curves and linear compressibilities, J. Phys. Chem. Sol. 37, 1141–1144 (1976) Google Scholar
  118. A. Kis, D. Mihailovic, M. Remskar, A. Mrzel, A. Jesih, I. Piwonski, A. J. Kulik, W. Benoit, L. Forro: Shear and {Young's} moduli of {MoS_2} nanotube ropes, Adv. Mater. 15, 733–736 (2003) Google Scholar
  119. L. Scheffer, R. Rosentzveig, A. Margolin, R. Popovitz-Biro, G. Seifert, S. R. Cohen, R. Tenne: Scanning tunneling microscopy study of {WS_2} nanotubes, Phys. Chem. Chem. Phys. 4, 2095–2098 (2002) Google Scholar
  120. O. Ponomarenko, M. W. Radny, P. V. Smith, G. Seifert: Properties of boron carbide nanotubes: Density-functional-based tight-binding calculations, Phys. Rev. B 67, 125401 (2003) Google Scholar
  121. V. V. Ivanovskaya, T. Heine, S. Gemming, G. Seifert: Structure, stability and electronic properties of composite {Mo1-xNb_xS_2} nanotubes, Phys. Stat. Sol. B 243, 1757–1764 (2006) Google Scholar
  122. G. Seifert, H. Terrones, M. Terrones, T. Frauenheim: Novel {NbS_2} metallic nanotubes,, Solid State Commun. 115, 635–638 (2000) Google Scholar
  123. L. Qian, Z.-L. Dub, S.-Y. Yang, Z.-S. Jin: {Raman} study of titania nanotube by soft chemical process, J. Mol. Struct. 749, 103–107 (2005) Google Scholar
  124. D. V. Bavykin, S. N. Gordeev, A. V. Moskalenko, A. A. Lapkin, F. C. Walsh: Apparent two-dimensional behavior of {TiO2} nanotubes revealed by light absorption and luminescence, J. Phys. Chem. B 109, 8565–8569 (2005) Google Scholar
  125. L. Qian, Z.-S. Jin, S.-Y. Yang, Z.-L. Du, X.-R. Xu: Bright visible photoluminescence from nanotube titania grown by soft chemical process, Chem. Mater. 17, 5334–5338 (2005) Google Scholar
  126. X. Liu, C. Täschner, A. Leonhardt, M. H. Rümmeli, T. Pichler, T. Gemming, B. Büchner, M. Knupfer: Structural, optical and electronic properties of vanadium oxide nanotubes, Phys. Rev. B 72, 115407 (2005) Google Scholar
  127. J. Cao, J. Choi, J. L. Musfeldt, S. Lutta, M. S. Whittingham: Effect of sheet distance on the optical properties of vanadate nanotubes, Chem. Mater. 16, 731–736 (2004) Google Scholar
  128. W. Chen, L. Mai, J. Peng, Q. Xu, Q. Zhu: {Raman} spectroscopic study of vanadium oxide nanotubes, J. Solid State Chem. 177, 377–379 (2004) Google Scholar
  129. A. G. {Souza Filho}, O. P. Ferreira, E. J. G. Santos, J. {Mendes Filho}, O. L. Alves: {Raman} spectra in vanadate nanotubes, Nano Lett. 4, 2099–2104 (2004) Google Scholar
  130. K. P. Loh, H. Zhang, W. Z. Chen, W. Ji: Templated deposition of {{MoS2}} nanotubules using single source precursor and studies of their optical limiting properties, J. Phys. Chem. B 110, 1235–1239 (2006) Google Scholar
  131. P. M. Rafailov, C. Thomsen, K. Gartsman, I. Kaplan-Ashiri, R. Tenne: Orientation dependence of the polarizability of an individual {WS2} nanotube by resonant {Raman} spectroscopy, Phys. Rev. B 72, 205436 (2005) Google Scholar
  132. R. D. Luttrell, S. Brown, J. Cao, J. L. Musfeldt, R. Rosentsveig, R. Tenne: Dynamics of bulk versus nanoscale {WS2}: Local strain and charging effects, Phys. Rev. B 73, 035410 (2006) Google Scholar
  133. L. Rapoport, N. Fleischer, R. Tenne: Applications of {WS2} ({MoS}2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites, J. Mater. Chem. 15, 1782–1788 (2005) Google Scholar
  134. L. Joly-Pottuz, F. Dassenoy, M. Belin, B. Vacher, J. M. Martin, N. Fleischer: Ultralow-friction and wear properties of {IF}-{WS2} under boundary lubrication, Tribol. Lett. 18, 477–485 (2005) Google Scholar
  135. J. J. Hu, J. S. Zabinski: Nanotribology and lubrication mechanisms of inorganic fullerene-like {{MoS2}} nanoparticles investigated using lateral force microscopy ({LFM}), Tribol. Lett. 18, 173–180 (2005) Google Scholar
  136. W. X. Chen, Z. D. Xu, R. Tenne, R. Rosenstveig, W. L. Chen, H. Y. Gan, J. P. Tu: Wear and friction of {Ni-P} electroless composite coating including inorganic fullerene-like {WS2} nanoparticles, Adv. Eng. Mater. 4, 686–690 (2002) Google Scholar
  137. A. Katz, M. Redlich, L. Rapoport, H. D. Wagner, R. Tenne: Self-lubricating coatings containing fullerene-like {WS2} nanoparticles for orthodontic wires and other possible medical applications, Tribol. Lett. 21, 135–139 (2006) Google Scholar
  138. H. Friedman, O. Eidelman, Y. Feldman, A. Moshkovich, V. Perfiliev, L. Rapoport, H. Cohen, A. Yoffe, R. Tenne: Fabrication of self-lubricating cobalt coatings on metal surfaces, Nanotechnology 18, 115703 (2007) Google Scholar
  139. F. Dassenoy, L. Joly-Pottuz, J. M. Martin, D. Vrbanic, A. Mrzel, D. Mihailovic, W. Vogel, G. Montagnac: Tribological performances of {Mo6S}3{I6} nanowires, J. Eur. Ceram. Soc. 27, 915–919 (2007) Google Scholar
  140. H. Tsabari: Inorganic Fullerene-like {WS2} Nano-Spheres (IF-WS2), ({Batch No.HP6}) acute oral toxicity, acute toxic class method in the rat, final report, Harlan Biotech Israel (2005) Google Scholar
  141. I. Haist: Test for Sensitization (Local Lymph Node Assay {LLNA}) with Inorganic Fullerene-like {WS2} Nano-Spheres, Technical report, BSL Bioservice Project No. 052052 (2005) Google Scholar
  142. L. Joly-Pottuz, J. M. Martin, F. Dassenoy, M. Belin, G. Montagnac, B. Reynard, N. Fleischer: Pressure-induced exfoliation of inorganic fullerene-like {WS2} particles in a {Hertzian} contact, J. Appl. Phys. 99, 023524 (2006) Google Scholar
  143. Y. Q. Zhu, T. Sekine, Y. H. Li, M. W. Fay, Y. M. Zhao, C. H. P. Poa, W. X. Wang, R. Martin, P. D. Brown, N. Fleischer, R. Tenne: Shock-absorbing and failure mechanism of {WS2} and {{MoS2}} nanoparticles with fullerene-like structure under shockwave pressures, J. Am. Chem. Soc. 127, 16263–16272 (2005) Google Scholar
  144. J. Chen, S. L. Li, Z. L. Tao: Novel hydrogen storage properties of {{MoS2}} nanotubes, J. Alloys Compd. 356–357, 413–317 (2003) Google Scholar
  145. J. Chen, S. L. Li, Z. L. Tao, Y. T. Shen, C. X. Cui: Titanium disulfide nanotubes as hydrogen-storage materials, J. Am. Chem. Soc. 125, 5284–5285 (2003) Google Scholar
  146. R. Dominko, M. Gaberscek, D. Arcon, A. Mrzel, M. Remskar, D. Mihailovic, S. Pejovnik, J. Jamnik: Electrochemical preparation and characterization of {Li}z{MoS}2-x nanotubes, Electrochim. Acta 48, 3079–3084 (2003) Google Scholar
  147. H. A. Therese, F. Rocker, A. Reiber, J. Li, M. Stepputat, G. Glasser, U. Kolb, W. Tremel: {VS2} nanotubes containing organic-amine templates from the {NT-VO}x precursors and reversible copper intercalation in {NT}-{{VS}2}, Angew. Chem. Int. Ed. 44, 262–265 (2005) Google Scholar
  148. Y. Wang, J. Y. Lee, H. C. Zeng: Polycrystalline {SnO2} nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application, Chem. Mater. 17, 3899–3903 (2005) Google Scholar
  149. L. Krusin-Elbaum, D. M. Newns, H. Zeng, V. Derycke, J. Z. Sun, R. Sandstrom: Room-temperature ferromagnetic nanotubes controlled by electron or hole doping, Nature 431, 672–676 (2004) Google Scholar
  150. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes: Use of highly-ordered {TiO2} nanotube arrays in dye-sensitized solar cells, Nano Lett. 6, 215–218 (2006) Google Scholar
  151. K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank: Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented {TiO2} nanotubes arrays, Nano Lett. 7, 69–74 (2007) Google Scholar
  152. C. M. Ruan, M. Paulose, O. K. Vargese, C. A. Grimes: Enhanced photoelectrochemical-response in highly ordered {TiO2} nanotube-arrays anodized in boric acid containing electrolyte, Sol. Energy Mater. Sol. Cells 90, 1283–1295 (2006) Google Scholar
  153. G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko, C. A. Grimes: A room-temperature {TiO2}-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination, J. Mater. Res. 19, 628–634 (2004) Google Scholar
  154. A. Liu, M. Wei, I. Honma, H. Zhou: Biosensing properties of titanate-nanotube films: Selective detection of dopamine in the presence of ascorbate and uric acid, Adv. Funct. Mater. 16, 371–376 (2006) Google Scholar
  155. L. Qian, F. Teng, Z.-S. Jin, Z.-J. Zhang, T. Zhang, Y.-B. Hou, S.-Y. Yang, X.-R. Xu: Improved optoelectronic characteristics of light-emitting diodes by using a dehydrated nanotube titanic acid ({DNTA})-polymer nanocomposites, J. Phys. Chem. B 108, 13928–13931 (2004) Google Scholar
  156. H. Tokudome, M. Miyauchi: Electrochromism of titanate-based nanotubes, Angew. Chem. Int. Ed. 44, 1974–1977 (2005) Google Scholar
  157. J. Goldberger, R. Fan, P. Yang: Inorganic nanotubes: A novel platform for nanofluidics, Acc. Chem. Res. 39, 239–248 (2006) Google Scholar
  158. R. Chen, M. H. So, J. Yang, F. Deng, C. M. Chea, H. Sun: Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate, Chem. Commun. pp. 2265–2267 (2006) Google Scholar
  159. C. Zhi, Y. Bando, C. Tang, D. Golberg: Immobilization of proteins on {BN} nanotubes, J. Am. Chem. Soc. 127, 17144–17145 (2005) Google Scholar
  160. N. A. Dhas, K. S. Suslick: Sonochemical preparation of hollow nanospheres and hollow nanocrystals, J. Am. Chem. Soc. 127, 2368–2369 (2005) Google Scholar
  161. F. Cheng, X. Gou, J. Chen, Q. Xu: {Ni}/{{MoS2}} nanocomposites as the catalysts for hydrodesulfurization of thiophene and thiophene derivatives, Adv. Mater. 18, 2561–2564 (2006) Google Scholar
  162. S. Zhang, F. Cheng, Z. Tao, F. Gao, J. Chen: Removal of nickel ions from wastewater by {Mg(OH)2/MgO} nanostructures embedded in {Al2O}3 membranes, J. Alloys Compd. 426, 281–285 (2006) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • R. Tenne
    • 1
    Email author
  • M. Remškar
    • 2
  • A. Enyashin
    • 3
  • G. Seifert
    • 3
  1. 1.Department ofMaterials and InterfacesWeizmann InstituteRehovotIsrael
  2. 2.JozefStefan InstituteLjubljanaSlovenia
  3. 3.Physical ChemistryTechnische Universität DresdenDresdenGermany

Personalised recommendations