Doped Carbon Nanotubes: Synthesis, Characterization and Applications

  • Mauricio Terrones
  • Antonio G. Souza Filho
  • Apparao M. Rao
Part of the Topics in Applied Physics book series (TAP, volume 111)


Various applications of carbon nanotubes require their chemical modification inorder to tune/control their physicochemical properties. One way for achieving thiscontrol is by carrying out doping processes through which atoms and moleculesinteract (covalently or noncovalently) with the nanotube surfaces. The aim of thischapter is to emphasize the importance of different types of doping in carbonnanotubes (single-, double- and multiwall). There are three main categories ofdoping: exohedral, endohedral and inplane doping. We will review the most efficientways to dope carbon nanotubes and discuss the effects on the electronic, vibrational,chemical, magnetic and mechanical properties. In addition, we will discuss thedifferent ways of characterizing these doped nanotubes using spectroscopictechniques, such as resonant Raman, X-ray photoelectron, electron energy lossspectroscopy and others. It will be demonstrated that doped carbon nanotubes couldbe used in the fabrication of nanodevices (e.g., sensors, protein immobilizers,field emission sources, efficient composite fillers, etc.). We will also presentresults related to the importance of inplane-doped nanotubes for attachingvarious metal clusters and polymers covalently using wet chemical routes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund: Science of Fullerenes and Carbon Nanotubes (Academic Press, New York 1996) Google Scholar
  2. J. Sloan, M. Terrones, S. Nufer, S. Friedrichs, S. R. Bailey, H. G. Woo, M. Ruhle, J. L. Hutchison, M. L. H. Green: Metastable one-dimensional {AgCl1-xIx} solid-solution wurzite ``tunnel'' crystals formed within single-walled carbon nanotubes, J. Am. Chem. Soc. 124, 2116 (2002) Google Scholar
  3. A. M. Rao, P. C. Eklund, S. Bandow, A. Thess, R. E. Smalley: Evidence for charge transfer in doped carbon nanotube bundles from {Raman} scattering, Nature 388, 257 (1997) Google Scholar
  4. R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess, R. E. Smalley: Conductivity enhancement in single-walled carbon nanotube bundles doped with {K} and {Br}, Nature 388, 255 (1997) Google Scholar
  5. M. S. Dresselhaus, G. Dresselhaus: Intercalationındex{intercalation} compounds of graphite, Adv. Phys. 30, 139 (1981) Google Scholar
  6. S. Kazaoui, N. Minami, R. Jacquemin, H. Kataura, Y. Achiba: Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy, Phys. Rev. B 60, 13339 (1999) Google Scholar
  7. M. R. Pederson, J. Q. Broughton: Nanocapillarity in fullerene tubules, Phys. Rev. Lett. 69, 2689 (1992) Google Scholar
  8. P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura: Opening carbon nanotubes with oxygen and implications for filling, Nature 362, 522 (1993) Google Scholar
  9. M. Monthioux: Filling single-wall carbon nanotubes, Carbon 40, 1809 (2002) Google Scholar
  10. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato: Chemistry of carbon nanotubes, Chem. Rev. 106, 1105 (2006) Google Scholar
  11. Z. Y. Wang, Z. B. Zhao, J. S. Qiu: Development of filling carbon nanotubes, Prog. Chem. 18, 563 (2006) Google Scholar
  12. M. Terrones, N. Grobert, W. K. Hsu, Y. Q. Zhu, W. B. Hu, H. Terrones, J. P. Hare, H. W. Kroto, D. R. M. Walton: Advances in the creation of filled nanotubes and novel nanowires, Mater. Res. Soc. Bull. 24, 43 (1999) Google Scholar
  13. S. Iijima, T. Ichihashi: Single-shell carbon nanotubes of 1 nm diameter, Nature 363, 603 (1993) Google Scholar
  14. D. S. Bethune, C. H. Kiang, M. S. D. Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers: Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls, Nature 363, 605 (1993) Google Scholar
  15. B. W. Smith, M. Monthioux, D. E. Luzzi: Encapsulated {C60} in carbon nanotubes, Nature 296, 323 (1998) Google Scholar
  16. J. Sloan, J. Hammer, M. Z. Sibley, M. L. H. Green: The opening and filling of single walled carbon nanotubes ({SWTs}), Chem. Commun. 3, 347 (1998) Google Scholar
  17. C. H. Kiang, J. S. Choi, T. T. Tran, A. D. Bacher: Molecular nanowires of 1 nm diameter from capillary filling of single-walled carbon nanotubes, J. Phys. Chem. B 103, 7449 (1999) Google Scholar
  18. P. Corio, A. P. Santos, M. L. A. Temperini, V. W. Brar, M. A. Pimenta, M. S. Dresselhaus: Chem. Phys. Lett. 383, 475 (2004) Google Scholar
  19. A. Govindaraj, B. C. Satishkumar, M. Nath, C. N. R. Rao: Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles, Chem. Mater. 12, 205 (2000) Google Scholar
  20. J. Sloan, D. M. Wright, H. G. Woo, S. R. Bailey, G. Brown, A. P. E. York, K. S. Coleman, J. L. Hutchison, M. L. H. Green: Capillarity and silver nanowire formation observed in single walled carbon nanotubes, Chem. Commun. 700, 699 (1999) Google Scholar
  21. R. R. Meyer, J. Sloan, R. E. Dunin-Borkowski, A. Kirkland, M. C. Novotny, S. R. Bailey, J. L. Hutchison, M. L. H. Green: Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes, Science 289, 1324 (2000) Google Scholar
  22. D. E. Luzzi, B. W. Smith: Carbon cage structures in single wall carbon nanotubes: a new class of materials, Carbon 38, 1751 (2000) Google Scholar
  23. E. Hernández, V. Meunier, B. W. Smith, R. Rurali, H. Terrones, Buongiorno, N. Nardelli, M. Terrones, D. E. Luzzi, J. C. Charlier: Fullerene coalescence in nanopeapods: A path to novel tubular carbon, Nano Lett. 3, 1037 (2003) Google Scholar
  24. K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara, S. Iijima: One-dimensional metallofulerene crystal generated inside single-walled carbon nanotubes, Phys. Rev. Lett. 85, 5384 (2000) Google Scholar
  25. A. Khlobystov, D. A. Britz, A. Ardavan, G. A. D. Briggs: Observation of ordered phases of fullerenes in carbon nanotubes, Phys. Rev. Lett. 92, 245507 (2004) Google Scholar
  26. D. Ugarte, T. Stockli, J. M. Bonard, A. Chatelain, W. A. D. Heer: Filling carbon nanotubes, Appl. Phys. A 67, 101 (1998) Google Scholar
  27. A. Kolesnikov, J. M. Zanotti, C. K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, C. J. Burnham: Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement, Phys. Rev. Lett. 93, 035503 (2004) Google Scholar
  28. L. J. Li, A. N. Khlobystov, J. G. Wiltshire, G. A. Briggs, R. J. Nicholas: Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes, Nature Mater. 4, 481 (2005) Google Scholar
  29. H. Kataura, Y. Maniwa, T. Kodama, K. Kikuchi, K. Hirahara, S. Iijima, S. Suzuki, W. Krätschmer, Y. Achiba: Fullerene-peapods: Synthesis, structure, and {Raman} spectroscopy, in H. Kuzmany, J. Fink, M. Mehring, S. Roth (Eds.): Electronic Properties of Molecular Nanostructures, AIP Proc. 591 (2001) p. 251 Google Scholar
  30. C. E. Lowell: Solid solution of boron in graphite, J. Am. Ceram. Soc. 50, 142 (1966) Google Scholar
  31. C. T. Hach, L. E. Jones, C. Crossland, P. A. Thrower: An investigation of vapor deposited boron rich carbon – a novel graphite-like material – part {I}: the structure of {BCx (C6B)} thin films, Carbon 37, 221 (1999) Google Scholar
  32. A. Oya, R. Yamashita, S. Otani: Catalytic graphitization of carbons by borons, Fuel 58, 495 (1979) Google Scholar
  33. M. Endo, T. Hayashi, S. H. Hong, T. Enoki, M. S. Dresselhaus: Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite, J. Appl. Phys. 90, 5670 (2001) Google Scholar
  34. M. Endo, C. Kim, T. Karaki, Y. Nishimura, M. J. Matthews, S. D. M. Brown, M. S. Dresselhaus: Anode performance of a {Li} ion battery based on graphitized and {B}-doped milled mesophase pitch-based carbon fibers, Carbon 37, 561 (1999) Google Scholar
  35. A. Marchand, J. V. Zanchetta: Proprietes electroniques d'un carbone dope a l'azote, Carbon 3, 483 (1966) Google Scholar
  36. K. Takeya, K. Yazawa: Unusual galvanomagnetic properties of pyrolytic graphite, J. Phys. Soc. Jpn. 19, 138 (1964) Google Scholar
  37. K. T. K. Yazawa, N. Okuyama, H. Akutsu: Evidence for existence of extremely light carriers in pyrolytic carbons, Phys. Rev. Lett. 15, 111 (1965) Google Scholar
  38. T. Belz, A. Baue, J. Find, M. Günter, D. Herein, H. Möckel, N. Pfänder, H. Sauer, G. Schulz, J. Schütze, O. Timpe, U. Wild, R. Schlögi: Structural and chemical characterization of {N}-doped nanocarbons, Carbon 36, 731 (1998) Google Scholar
  39. E. Hernández, C. Goze, P. Bernier, A. Rubio: Elastic properties of {C} and {B}x{C}y{N}z composite nanotubes, Phys. Rev. Lett. 80, 4502 (1999) Google Scholar
  40. E. Hernández, C. Goze, P. Bernier, A. Rubio: Elastic properties of single-wall nanotubes, Appl. Phys. A. Mater 68, 287 (1999) Google Scholar
  41. R. P. Gao, Z. L. Wang, Z. G. Bai, W. A. de Heer, L. M. Dai, M. Gao: Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays, Phys. Rev. Lett. 85, 622 (2000) Google Scholar
  42. R. J. Baierle, S. B. Fagan, R. Mota, A. J. R. da Silva, A. Fazzio: Electronic and structural properties of silicon-doped carbon nanotubes, Phys. Rev. 64, 085413 (2001) Google Scholar
  43. E. Cruz-Silva, D. Cullen, L. Gu, J. M. Romo-Herrera, E. {Muñoz}-Sandoval, F. L\'opez-Ur\'ias, D. J. Smith, H. Terrones, M. Terrones: Hetero-doped nanotubes: Theory, synthesis and characterization of phosphorous-nitrogen doped multiwalled carbon nanotubes submitted Google Scholar
  44. S. B. Fagan, R. Mota, R. J. Baierle, A. J. R. da Silva, A. Fazzio: Ab initio study of an organic molecule interacting with a silicon-doped carbon nanotube, Diam. Relat. Mater. 12, 861 (2003) Google Scholar
  45. O. Stephan, P. M. Ajayan, C. Colliex, P. Redlich, J. M. Lambert, P. Bernier, P. Lefin: Doping graphitic and carbon nanotube structures with boron and nitrogen, Science 266, 1683 (1994) Google Scholar
  46. P. Redlich, L. Loeffler, P. M. Ajayan, J. Bill, F. Aldinger, M. Ruhle: {B}-{C}-{N} nanotubes and boron doping of carbon nanotubes, Chem. Phys. Lett. 260, 465 (1996) Google Scholar
  47. M. Terrones, W. K. Hsu, S. Ramos, R. Castillo, H. Terrones: The role of boron nitride in graphite plasma arcs, Full. Sci. Tech. 6, 787 (1998) Google Scholar
  48. W. K. Hsu, M. Terrones: unpublished results Google Scholar
  49. M. Glerup, J. Steinmetz, D. Samaille, O. Stephan, S. Enouz, A. Loiseau, S. Roth, P. Bernier: Synthesis of {N}-doped {SWNT} using the arc-discharge procedure, Chem. Phys. Lett. 387, 193 (2004) Google Scholar
  50. Y. Zhang, H. Gu, K. Suenaga, S. Iijima: Heterogeneous growth of {B}–{C}–{N} nanotubes by laser ablation, Chem. Phys. Lett. 279, 264 (1997) Google Scholar
  51. P. Gai, O. Stephan, K. McGuire, A. M. Rao, M. S. Dresselhaus, G. Dresselhaus, C. Colliex: Structural systematics in boron-doped single wall carbon nanotubes, J. Mater. Chem. 14, 669 (2004) Google Scholar
  52. M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto, D. R. M. Walton: Controlled production of aligned-nanotube bundles, Nature 388, 52 (1997) Google Scholar
  53. M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W. K. Hsu, H. Terrones, Y. Q. Zhu, J. P. Hare, C. L. Reeves, A. K. Cheetham, M. Ruhle, H. W. Kroto, D. R. M. Walton: Carbon nitride nanocomposites: Formation of aligned {C}x{N}y nanofibers, Adv. Mater. 11, 655 (1999) Google Scholar
  54. R. Sen, B. C. Satishkumar, S. Govindaraj, K. R. Harikumar, M. K. Renganathan, C. N. R. Rao: Nitrogen-containing carbon nanotubes, J. Mater. Chem. 7, 2335 (1997) Google Scholar
  55. G. Keskar, R. Rao, J. Luo, J. Hudson, A. M. Rao: Growth, nitrogen doping and characterization of isolated single-wall carbon nanotubes using liquid precursors, Chem. Phys. Lett. 412, 269 (2005) Google Scholar
  56. F. Villalpando-Paez, A. Zamudio, A. L. Elias, H. Son, E. B. Barros, S. Chou, Y. A. Kim, H. Muramatsu, T. Hayashi, J. Kong, H. Terrones, G. Dresselhaus, M. Endo, M. Terrones, M. S. Dresselhaus: Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes, Chem. Phys. Lett. 424, 345 (2006) Google Scholar
  57. D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato: Large-scale synthesis and {HRTEM} analysis of single-walled {B}- and {N}-doped carbon nanotube bundles, Carbon 38, 2017 (2000) Google Scholar
  58. E. Borowiak-Palen, T. Pichler, G. G. Fuentes, A. Graff, R. J. Kalenczuk, M. Knupfer, J. Fink: Efficient production of {B}-substituted single-wall carbon nanotubes, Chem. Phys. Lett. 378, 516 (2003) Google Scholar
  59. M. Endo, H. Muramatsu, T. Hayashi, Y. A. Kim, G. V. Lier, J. C. Charlier, H. Terrones, M. Terrones, M. S. Dresselhaus: Atomic nanotube welders: Boron interstitials triggering connections in double-walled carbon nanotubes, Nano Lett. 5, 1099 (2005) Google Scholar
  60. E. G. Wang, Z. G. Guo, J. Ma, M. M. Zhou, Y. K. Pu, S. Liu, G. Y. Zhang, D. Y. Zhong: Optical emission spectroscopy study of the influence of nitrogen on carbon nanotube growth, Carbon 41, 1827 (2003) Google Scholar
  61. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat: Uniform patterned growth of carbon nanotubes without surface carbon, Appl. Phys. Lett. 79, 1534 (2001) Google Scholar
  62. K. Teo, D. B. Hash, R. G. Lacerda, N. L. Rupesinghe, M. S. Bell, S. H. Dalal, D. Bose, T. R. Govindan, B. A. Cruden, M. Chhowalla, G. A. J. Amaratunga, J. M. Meyyappan, W. I. Milne: The significance of plasma heating in carbon nanotube and nanofiber growth, Nano Lett. 4, 921 (2004) Google Scholar
  63. J. Yu, X. D. Bai, J. Ahn, S. F. Yoon, E. G. Wang: Highly oriented rich boron {B}–{C}–{N} nanotubes by bias-assisted hot filament chemical vapor deposition, Chem. Phys. Lett. 323, 529 (2000) Google Scholar
  64. A. Jorio, M. A. Pimenta, A. G. {Souza Filho}, R. Saito, M. S. Dresselhaus, G. Dresselhaus: {Characterizing} carbon nanotube samples with resonance {Raman} scattering, New J. Phys. 5, 137 (2003) Google Scholar
  65. K. Koziol, M. S. Shaffer, A. H. Windle: Three-dimensional internal order in multiwalled carbon nanotubes grown by chemical vapor deposition, Adv. Mater. 17, 760 (2005) Google Scholar
  66. C. Ducati, K. Koziol, S. Friedrichs, T. J. V. Yates, M. S. Shaffer, P. A. Midgkey, A. H. Windle: Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen, Small 2, 774 (2006) Google Scholar
  67. P. Kohler-Redlich, M. Terrones: Detection of {B} using {EELS} within {B}-doped carbon nanotubes, Unpublished results Google Scholar
  68. X. Blase, J.-C. Charlier, A. D. Vita, R. Car, P. Redlich, Ph, M. Terrones, W. K. Hsu, H. Terrones, D. L. Carroll, P. M. Ajayan: Boron-mediated growth of long helicity-selected carbon nanotubes, Phys. Rev. Lett. 83, 5078, (1999) Google Scholar
  69. W. Hsu, S. Firth, P. Redlich, M. Terrones, H. Terrones, Y. Q, Zhu, N. Grobert, A. Schilder, R. J. H. Clark, H. W. Kroto, D. R. M. Walton: Boron doping effects in carbon nanotubes, J. Mater. Chem. 10, 1425 (2000) Google Scholar
  70. E. Hernández, P. Ordejόn, I. Boustani, A. Rubio, J. A. Alonso: Tight binding molecular dynamics stuides of boron assisted nanotube growth, J. Chem. Phys. 113, 3814 (2000) Google Scholar
  71. M. Terrones, N. Grobert, H. Terrones: Synthetic routes to nanoscale {B}x{C}y{N}z architectures, Carbon 40, 1665 (2002) Google Scholar
  72. K. McGuire, N. Gothard, P. Gai, M. Dresselhaus, G. Sumanasekera, A. Rao: Synthesis and {Raman} characterization of boron-doped single-walled carbon nanotubes, Carbon 43, 219 (2005) Google Scholar
  73. M. Terrones, W. K. Hsu, A. Schilder, H. Terrones, N. Grobert, J. P. Hare, Y. Q. Zhu, M. Schwoerer, K. Prassides, H. W. Kroto, D. R. M. Walton: Novel nanotubes and encapsulated nanowires, Appl. Phys. A-Mater. 66, 307 (1998) Google Scholar
  74. D. Carroll, P. Redlich, X. Blase, J. C. Charlier, S. Curran, P. M. Ajayan, S. Roth, M. Ruhle: Effects of nanodomain formation on the electronic structure of doped carbon nanotubes, Phys. Rev. Lett. 81, 2332 (1998) Google Scholar
  75. R. Czerw, M. Terrones, J. C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Ruhle, D. L. Carroll: {Identification} of electron donor states in {N}-doped carbon nanotubes, Nano Lett. 1, 457 (2001) Google Scholar
  76. K. Liu, P. Avouris, R. Martel, W. K. Hsu: Electrical transport in doped multiwalled carbon nanotubes, Phys. Rev. B 63, 161404 (2001) Google Scholar
  77. D. Golberg, P. S. Dorozhkin, Y. Bando, Z. C. Dong, C. C. Tang, Y. Uemura, N. Grobert, M. Reyes-Reyes, H. Terrones, M. Terrones: {Structure}, transport and field-emission properties of compound nanotubes: {CN}_x vs. {BNC}_x (x < 0.1), Appl. Phys. A-Mater. 76, 499 (2003) Google Scholar
  78. S. Latil, S. Roche, D. Mayou, J.-C. Charlier: Mesoscopic transport in chemically doped carbon nanotubes, Phys. Rev. Lett. 92, 256805 (2004) Google Scholar
  79. W. K. Hsu, S. Y. Chu, E. Munoz-Picone, J. L. Boldu, S. Firth, P. Franchi, B. P. Roberts, A. Schilder, H. Terrones, N. Grobert, Y. Q. Zhu, M. Terrones, M. E. McHenry, H. W. Kroto, D. R. M. Walton: Metallic behaviour of boron-containing carbon nanotubes, Chem. Phys. Lett. 323, 572 (2000) Google Scholar
  80. Y. M. Choi, D. S. Lee, R. Czerw, P. W. Chiu, N. Grobert, M. Terrones, M. Reyes-Reyes, H. Terrones, J. C. Charlier, P. M. Ajayan, S. Roth, D. L. Carroll, Y. W. Park: Nonlinear behavior in the thermopower of doped carbon nanotubes due to strong, localized states, Nano Lett. 3, 839 (2003) Google Scholar
  81. L. Grigorian, G. U. Sumanasekera, A. L. Loper, S. Fang, J. L. Allen, P. C. Eklund: Transport properties of alkali-metal-doped single-wall carbon nanotubes, Phys. Rev. B 58, 4195 (1998) Google Scholar
  82. K. Bradley, S. Jhi, P. G. Collins, J. Hone, M. L. Cohen, S. G. Louie, A. Zettl: Is the intrinsic thermoelectric power of carbon nanotubes positive?, Phys. Rev. Lett. 85, 4361 (2000) Google Scholar
  83. S. Bandow, A. M. Rao, G. U. Sumanasekera, P. C. Eklund, F. Kokai, K. Takahashi, S. Iijima: {Evidence} for anomalously small charge transfer in doped single-wall carbon nanohorn aggregates with {Li}, {K} and {Br}, Appl. Phys. A-Mater. 71, 561 (2000) Google Scholar
  84. M. S. Dresselhaus, P. C. Eklund: Phonons in carbon nanotubes, Adv. Phys. 40, 705 (2000) Google Scholar
  85. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. {Souza Filho}, R. Saito: Raman spectroscopy on isolated single wall carbon nanotubes, Carbon 40, 2043 (2002) Google Scholar
  86. A. Kukovecz, T. Pichler, R. Pfeiffer, H. Kuzmany: {Diameter} selective charge transfer in p- and n-doped single wall carbon nanotubes synthesized by the {HiPCO} method, Chem. Commun. 5, 1730 (2002) Google Scholar
  87. A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus: {Structural} (n, m) determination of isolated single-wall carbon nanotubes by resonant {Raman} scattering, Phys. Rev. Lett. 86, 1118 (2001) Google Scholar
  88. A. G. {Souza Filho}, A. Jorio, G. G. Samsonidze, G. Dresselhaus, R. Saito, M. S. Dresselhaus: Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes, Nanotechnol. 14, 1130 (2003) Google Scholar
  89. Y. A. Kim, M. Kojima, H. Muramatsu, S. Umemoto, T. Watanabe, K. Yoshida, K. Sato, T. Ikeda, T. Hayashi, M. Endo, M. Terrones, M. S. Dresselhaus: In situ {Raman} study on single- and double-walled carbon nanotubes as a function of lithium insertion, Small 2, 667–676 (2006) Google Scholar
  90. B. Akdim, X. Duan, D. A. Shiffler, R. Pachter: Theoretical study of the effects of alkali-metal atoms adsorption on {Raman} spectra of single-wall carbon nanotubes, Phys. Rev. B 72, 121402 (2005) Google Scholar
  91. H. Kuzmany, A. Kukovecz, F. Simon, M. Holzweber, C. Kramberger, T. Pichler: Functionalization of carbon nanotubes, Synth. Met. 141, 113 (2004) Google Scholar
  92. S. B. Fagan, A. G. {Souza Filho}, J. {Mendes Filho}, P. Corio, M. S. Dresselhaus: {Electronic} properties of {Ag}- and {CrO}3-filled single-wall carbon nanotubes, Chem. Phys. Lett. 456, 54 (2005) Google Scholar
  93. P. Corio, A. P. Santos, M. L. A. Temperini, V. W. Brar, M. A. Pimenta, M. S. Dresselhaus: Characterization of single wall carbon nanotubes filled with silver and with chromium compounds, Chem. Phys. Lett. 383, 475 (2004) Google Scholar
  94. G. Chen, C. A. Furtado, U. J. Kim, P. C. Eklund: Alkali-metal-doping dynamics and anomalous lattice contraction of individual debundled carbon nanotubes, Phys. Rev. B 72, 155406 (2005) Google Scholar
  95. G. Chen, C. A. Furtado, S. Bandow, S. Iijima, P. C. Eklund: {Anomalous} contraction of the {C}–{C} bond length in semiconducting carbon nanotubes observed during {Cs} doping, Phys. Rev. B 71, 045408 (2005) Google Scholar
  96. L. Terrazos, R. B. Capaz: unpublished results Google Scholar
  97. T. Pichler, A. Kukovecz, H. Kuzmany, H. Kataura: Charge transfer in doped single wall carbon nanotubes, Synth. Met. 135-136, 717 (2003) Google Scholar
  98. S. Guerini, A. G. {Souza Filho}, J. M. Filho, O. L. Alves, S. B. Fagan: {Electronic} properties of {FeCl}3-adsorbed single-wall carbon nanotubes, Phys. Rev. B 72, 233401 (2005) Google Scholar
  99. A. Rakitin, C. Papadopoulos, J. M. Xu: Carbon nanotube self-doping: Calculation of the hole carrier concentration, Phys. Rev. B 67, 033411 (2003) Google Scholar
  100. A. G. {Souza Filho}, M. Endo, H. Muramatsu, T. Hayashi, Y. A. Kim, E. B. Barros, N. Akuzawa, G. G. Samsonidze, R. Saito, M. S. Dresselhaus: {Resonance} {Raman} scattering studies in {Br}-2-adsorbed double-wall carbon nanotubes, Phys. Rev. B 73, 235413 (2006) Google Scholar
  101. T. C. Chieu, M. S. Dresselhaus, M. Endo: Raman studies of benzene-derived graphite fibers, Phys. Rev. B 26, 5867 (1982) Google Scholar
  102. M. Endo, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Terrones, R. Saito, F. Villalpando-Paez, S. G. Chou, M. S. Dresselhaus: Nanotube coalescence-inducing mode: A novel vibrational mode in carbon systems, Small 2, 1031 (2006) Google Scholar
  103. C. Fantini, E. Cruz, A. Jorio, M. Terrones, H. Terrones, G. V. Lier, J. C. Charlier, M. S. Dresselhaus, R. Saito, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, M. A. Pimenta: Resonance {Raman} study of linear carbon chains formed by the heat treatment of double-wall carbon nanotubes, Phys. Rev. B 73, 193408 (2006) Google Scholar
  104. V. Georgakilas, D. Voulgaris, E. Vazquez, M. Prato, D. M. Guldi, A. Kukovecz, H. Kuzmany: Purification of {HiPCO} carbon nanotubes via organic functionalization, J. Am. Chem. Soc. 124, 14318 (2002) Google Scholar
  105. M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. Richardson, N. G. Tassi: {DNA}-assisted dispersion and separation of carbon nanotubes, Nature Mater. 2, 338 (2003) Google Scholar
  106. M. Zheng, A. Jagota., M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. Mclean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Ursey, D. J. Walls: {Structure}-based carbon nanotube sorting by sequence-dependent {DNA} assembly, Science 302, 1545 (2003) Google Scholar
  107. D. A. Heller, E. S. Jeng, T. K. Yeung, B. M. Martinez, A. E. Moll, J. B. Gastala, M. S. Strano: {Optical} detection of {DNA} conformational polymorphism on single-walled carbon nanotubes, Science 311, 508 (2006) Google Scholar
  108. J.-C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N. L. Rupesinghe, W. K. Hsu, N. Grobert, H. Terrones, G. A. J. Amaratunga: {Enhanced} electron field emission in {B}-doped carbon nanotubes, Nano Lett. 2, 1191 (2002) Google Scholar
  109. M. Doytcheva, M. Kaiser, M. Reyes-Reyes, M. Terrones, N. de Jonge: Electron emission from individual nitrogen-doped multi-walled carbon nanotubes, Chem. Phys. Lett. 396, 126 (2004) Google Scholar
  110. M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, M. S. Dresselhaus: {Vapor}-grown carbon fibers ({VGCFs}) – {Basic} properties and their battery applications, Carbon 39, 1287 (2001) Google Scholar
  111. D. Y. Zhang, G. Y. Zhang, S. Liu, E. G. Wang, Q. Wang, H. Li, X. J. Huang: Lithium storage in polymerized carbon nitride nanobells, Appl. Phys. Lett. 79, 3500 (2001) Google Scholar
  112. J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, H. J. Dai: Nanotube molecular wires as chemical sensors, Science 287, 622–625 (2000) Google Scholar
  113. S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber: Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology, Nature 394, 52–55 (1998) Google Scholar
  114. P. Collins, K. Bradley, M. Ishigami, A. Zettl: Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science 287, 1801–1804 (2000) Google Scholar
  115. F. Villalpando-Páez, A. H. Romero, E. Munoz-Sandoval, L. M. Martinez, H. Terrones, M. Terrones: {Fabrication} of vapor and gas sensors using films of aligned {CN}x nanotubes, Chem. Phys. Lett. 386, 137 (2004) Google Scholar
  116. P. Calvert: Nanotube composites – a recipe for strength, Nature 399, 210 (1999) Google Scholar
  117. A. Eitan, L. S. Schadler, J. Hansen, P. M. Ajayan, R. W. Siegel, M. Terrones, N. Grobert, M. Reyes-Reyes, M. Mayne, H. Terrones: Processing and thermal characterization of nitrogen doped {MWNT}/epoxy composites, in Proc. Tenth US–Japan Conf. Compos. Mater. (2002) pp. 634–640 Google Scholar
  118. B. Fragneaud, K. Masenelli-Varlot, A. González-Montiel, M. Terrones, J. Y. Cavaillé: {Efficient} coating of {N}-doped carbon nanotubes with polystayrene using atomic transfer radical polymerization, Chem. Phys. Lett. 419, 567 (2005) Google Scholar
  119. M. Dehonor, K. Masenelli-Varlot, A. González-Montiel, C. Gauthier, J. Y. Cavaillé, H. Terrones, M. Terrones: Nanotube brushes: Polystyrene grafted covalently on {CN\rm x} nanotubes by nitroxide-mediated radical polymerization, Chem. Commun. 42, 5349 (2005) Google Scholar
  120. B. Fragneaud, K. Masenelli-Varlot, A. {Gonz\'alez}-Montiel, M. Terrones, \mbox{J.-Y.} Cavaill\'e: Electrical behavior of polymer grafted nanotubes/polymer nanocomposites using {N}-doped carbon nanotubes, Chem. Phys. Lett. 444, 1 (2007) Google Scholar
  121. D. M. Guldi, M. Marcaccio, D. Paolucci, F. Paolucci, M. Tagmatarchis, D. Tasis, E. Vasquez, M. Prato: Angew. Chem. Int. Ed. 42, 4206 (2003) Google Scholar
  122. K. Jiang, L. S. Schadler, R. W. Siegel, X. J. Zhang, H. F. Zhang, M. Terrones: Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation, J. Mater. Chem. 14, 37 (2004) Google Scholar
  123. K. Jiang, A. Eitan, L. S. Schadler, P. M. Ajayan, R. W. Siegel, N. Grobert, M. Mayne, M. Reyes-Reyes, H. Terrones, M. Terrones: Selective attachment of gold nanoparticies to nitrogen-doped carbon nanotubes, Nano Lett. 3, 275 (2003) Google Scholar
  124. A. Zamudio, A. L. Elías, J. A. Rodríguez-Manzo, F. Lόpez-Urías, G. Rodríguez-Gattorno, F. Lupo, M. Rühle, D. J. Smith, H. Terrones, D. Díaz, M. Terrones: Efficient anchoring of silver nanoparticles on {N}-doped carbon nanotubes, Small 2, 346 (2005) Google Scholar
  125. X. Leprό, Y. {Vega-Cant\'u}, F. J. Rodr\'iguez-Mac\'ias, Y. Bando, D. Golberg, M. Terrones: Production and characterization of co-axial nanotube junctions and networks of {CNx/CNT}, Nano Letters 7, 2220 (2007) Google Scholar
  126. J. L. Carrero-Sánchez, A. L. Elías, R. Mancilla, G. Arellín, H. Terrones, J. P. Laclette, M. Terrones: Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen, Nano Lett. 6, 1609 (2006) Google Scholar
  127. D. B. Warheit, B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, T. R. Webb: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats, Toxicol. Sci. 77, 117 (2004) Google Scholar
  128. A. L. Elias, J. Carrero-Sánchez, H. Terrones, M. Endo, J. Laclette, M. Terrones: Comparative viability studies of pure carbon and nitrogen-doped multi walled carbon nanotube with amoeba cells: From amoebicidal to biocompatible structures, Small 3, 1723 (2007) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mauricio Terrones
    • 1
  • Antonio G. Souza Filho
    • 2
  • Apparao M. Rao
    • 3
  1. 1.Advanced MaterialsDepartmentIPICYTSan Luis Potosí,SLPMéxico
  2. 2.Departamento de FisicaUniversidade Federal do Ceara60455-900 Fortaleza, CEBrazil
  3. 3.Department of Physicsand AstronomyClemson UniversityClemsonUSA

Personalised recommendations