Carbon Nanotubes pp 393-422

Part of the Topics in Applied Physics book series (TAP, volume 111) | Cite as

High Magnetic Field Phenomena in Carbon Nanotubes

Abstract

We review recent progress in the theoretical and experimental studiesof single-wall carbon nanotubes in high magnetic fields. Low-temperaturemagneto-transport experiments demonstrate the influence of quantum interference,disorder, and band-structure effects. Magneto-optical spectroscopy has been used toshow the effects of the Aharonov–Bohm phase on the band structure and on theexcitonic properties of carbon nanotubes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Ando: Role of the {A}haronov–{B}ohm phase in the optical properties of carbon nanotubes, in Topics in Applied Physics, vol. 111 (Springer, Heidelberg 2008) p. 213 Google Scholar
  2. H. Ajiki, T. Ando: Electronic states of carbon nanotubes, J. Phys. Soc. Jpn. 62, 1255 (1993) CrossRefGoogle Scholar
  3. H. Ajiki, T. Ando: Aharonov–{B}ohm effect in carbon nanotubes, Physica B 201, 349 (1994) CrossRefGoogle Scholar
  4. R. Saito, G. Dresselhaus, M. S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998) CrossRefGoogle Scholar
  5. J. Kono, S. Roche: Magnetic properties, in M. J. O'Connell (Ed.): Carbon nanotubes: Properties and applications (CRC Press, Boca Raton 2006) Chap. 5, pp. 119–151 CrossRefGoogle Scholar
  6. Y. Aharonov, D. Bohm: Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115, 485 (1959) CrossRefGoogle Scholar
  7. H. Ajiki, T. Ando: Energy bands of carbon nanotubes in magnetic fields, J. Phys. Soc. Jpn. 65, 505 (1996) CrossRefGoogle Scholar
  8. W. Tian, S. Datta: Aharonov–{B}ohm-type effect in graphene tubules: A {L}andauer approach, Phys. Rev. B 49, 5097 (1994) CrossRefGoogle Scholar
  9. S. Zaric, G. N. Ostojic, J. Kono, J. Shaver, V. C. Moore, M. S. Strano, R. H. Hauge, R. E. Smalley, X. Wei: Optical signatures of the {A}haronov–{B}ohm phase in single-walled carbon nanotubes, Science 304, 1129 (2004) CrossRefGoogle Scholar
  10. S. Zaric, G. N. Ostojic, J. Kono, J. Shaver, V. C. Moore, R. H. Hauge, R. E. Smalley, X. Wei: Estimation of magnetic susceptibility anisotropy of carbon nanotubes using magneto-photoluminescence, Nano Lett. 4, 2219 (2004) CrossRefGoogle Scholar
  11. S. Zaric, G. N. Ostojic, J. Shaver, J. Kono, X. Wei, M. Furis, S. A. Crooker, O. Portugall, P. H. Frings, G. L. J. A. Rikken, V. C. Moore, R. H. Hauge, R. E. Smalley: Magneto-optical spectroscopy of carbon nanotubes, Physica E 29, 469 (2005) CrossRefGoogle Scholar
  12. S. Zaric, G. N. Ostojic, J. Shaver, J. Kono, O. Portugall, P. H. Frings, G. L. J. A. Rikken, M. Furis, S. A. Crooker, X. Wei, V. C. Moore, R. H. Hauge, R. E. Smalley: Excitons in carbon nanotubes with broken time-reversal symmetry, Phys. Rev. Lett. 96, 016406 (2006) CrossRefGoogle Scholar
  13. A. Bachtold, C. Strunk, J.-P. Salvetat, J.-M. Bonard, L. Forr\'o, T. Nussbaumer, C. Sch{ö}nenberger: Aharonov–{B}ohm oscillations in carbon nanotubes, Nature 397, 673 (1999) CrossRefGoogle Scholar
  14. A. Fujiwara, K. Tomiyama, H. Suematsu, M. Yumura, K. Uchida: Quantum interference of electrons in multiwall carbon nanotubes, Phys. Rev. B 60, 13492 (1999) CrossRefGoogle Scholar
  15. J.-O. Lee, J.-R. Kim, J.-J. Kim, J. Kim, N. Kim, J. W. Park, K.-H. Yoo, K.-H. Park: Magnetoresistance and differential conductance in multiwalled carbon nanotubes, Phys. Rev. B 61, R16362 (2000) CrossRefGoogle Scholar
  16. J.-O. Lee, J.-R. Kim, J.-J. Kim, J. Kim, N. Kim, J. W. Park, K.-H. Yoo: Observation of magnetic-field-modulated energy gap in carbon nanotubes, Solid State Commun. 115, 467 (2000) CrossRefGoogle Scholar
  17. E. D. Minot, Y. Yaish, V. Sazonova, P. L. McEuen: Determination of electron orbital magnetic moments in carbon nanotubes, Nature 428, 536 (2004) CrossRefGoogle Scholar
  18. U. C. Coskun, T.-C. Wei, S. Vishveshwara, P. M. Goldbart, A. Bezryadin: \textit{h/e} magnetic flux modulation of the energy gap in nanotube quantum dots, Science 304, 1132 (2004) CrossRefGoogle Scholar
  19. G. Fedorov, B. Lassagne, M. Sagnes, B. Raquet, J.-M. Broto, F. Triozon, S. Roche, E. Flahaut: Gate-dependent magnetoresistance phenomena in carbon nanotubes, Phys. Rev. Lett. 94, 066801 (2005) CrossRefGoogle Scholar
  20. B. Stojetz, C. Miko, L. Forr{\'o}, C. Strunk: Effect of band structure on quantum interference in multiwall carbon nanotubes, Phys. Rev. Lett. 94, 186802 (2005) CrossRefGoogle Scholar
  21. S. Roche, G. Dresselhaus, M. S. Dresselhaus, R. Saito: Aharonov–{B}ohm spectral features and coherence lengths in carbon nanotubes, Phys. Rev. B 62, 16092 (2000) CrossRefGoogle Scholar
  22. H.-W. Lee, D. S. Novikov: Supersymmetry in carbon nanotubes in a transverse magnetic field, Phys. Rev. B 68, 155402 (2003) CrossRefGoogle Scholar
  23. N. Nemec, G. Cuniberti: Hofstadter butterflies of carbon nanotubes: Pseudo­fractality of the magnetoelectronic spectrum, Phys. Rev. B 74, 165411 (2006) CrossRefGoogle Scholar
  24. H. Ajiki, T. Ando: Magnetic properties of carbon nanotubes, J. Phys. Soc. Jpn. 62, 2470 (1993) CrossRefGoogle Scholar
  25. J. P. Lu: Novel magnetic properties of carbon nanotubes, Phys. Rev. Lett. 74, 1123 (1995) CrossRefGoogle Scholar
  26. L. Wang, P. S. Davids, A. Saxena, A. R. Bishop: Quasiparticle energy spectra and magnetic response of certain curved graphitic geometries, Phys. Rev. B 46, 7175 (1992) CrossRefGoogle Scholar
  27. P. S. Davids, L. Wang, A. Saxena, A. R. Bishop: Magnetic ordering transition of electrons on mesoscopic tubes, Phys. Rev. B 48, 17545 (1993) CrossRefGoogle Scholar
  28. H. Ajiki, T. Ando: Magnetic properties of ensembles of carbon nanotubes, J. Phys. Soc. Jpn. 64, 4382 (1995) CrossRefGoogle Scholar
  29. M. A. L. Marques, M. d'Avezac, F. Mauri: Magnetic response and {NMR} spectra of carbon nanotubes from \textit{ab-initio} calculations, Phys. Rev. B 73, 125433 (2006) CrossRefGoogle Scholar
  30. J. Heremans, C. H. Olk, D. T. Morelli: Magnetic susceptibility of carbon structures, Phys. Rev. B 49, 15122 (1994) CrossRefGoogle Scholar
  31. J.-P. Issi, L. Langer, J. Heremans, C. H. Olk: Electronic properties of carbon nanotubes: Experimental results, Carbon 33, 941 (1995) CrossRefGoogle Scholar
  32. A. P. Ramirez, R. C. Haddon, O. Zhou, R. M. Fleming, J. Zhang, S. M. McClure, R. E. Smalley: Magnetic susceptibility of molecular carbon: Nanotubes and fullerite, Science 265, 84 (1994) CrossRefGoogle Scholar
  33. A. Fujiwara, F. Katayama, K. Tomiyama, H. Ootoshi, H. Suematsu: Electronic Transport and Magnetic Properties of Carbon Nanotubes, Molecular Nanostructures (World Scientific, Singapore 1998) p. 439 Google Scholar
  34. A. S. Kotosonov: Texture and magnetic anisotropy of carbon nanotubes in cathode deposites obtained by electric-arc method, JETP Lett. 70, 476 (1999) CrossRefGoogle Scholar
  35. F. Tsui, L. Jin, O. Zhou: Anisotropic magnetic susceptibility of multiwalled carbon nanotubes, Appl. Phys. Lett. 76, 1452 (2000) CrossRefGoogle Scholar
  36. P. de Rango, M. Lees, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Germi, M. Pernet: Texturing of magnetic materials at high temperature by solidification in a magnetic field, Nature 349, 770 (1991) CrossRefGoogle Scholar
  37. M. Fujiwara, N. Fukui, Y. Tanimoto: Magnetic orientation of benzophenone crystals in fields up to 80.0 {KOe}, J. Phys. Chem. B 103, 2627 (1999) CrossRefGoogle Scholar
  38. T. Kimura, H. Ago, M. Tobita, S. Ohshima, M. Kyotani, M. Yumura: Polymer composites of carbon nanotubes aligned by a magnetic field, Adv. Mater. 14, 1380 (2002) CrossRefGoogle Scholar
  39. M. Fujiwara, E. Oki, M. Hamada, Y. Tanimoto, I. Mukouda, Y. Shimomura: Magnetic orientation and magnetic properties of a single carbon nanotube, J. Phys. Chem. A 105, 4383 (2001) CrossRefGoogle Scholar
  40. M. Fujiwara, K. Kawakami, Y. Tanimoto: Magnetic orientation of carbon nanotubes at temperatures of 231 {K} and 314 {K}, Mol. Phys. 100, 1085 (2002) CrossRefGoogle Scholar
  41. D. A. Walters, M. J. Casavant, X. C. Qin, C. B. Huffman, P. J. Boul, L. M. Ericson, E. H. Haroz, M. J. O'Connell, K. Smith, D. T. Colbert, R. E. Smalley: In-plane-aligned membranes of carbon nanotubes, Chem. Phys. Lett. 338, 14 (2001) CrossRefGoogle Scholar
  42. M. J. Casavant, D. A. Walters, J. J. Schmidt, R. E. Smalley: Neat macroscopic membranes of aligned carbon nanotubes, J. Appl. Phys. 93, 2153 (2003) CrossRefGoogle Scholar
  43. M. F. Islam, D. E. Milkie, O. N. Torrens, A. G. Yodh, J. M. Kikkawa: Magnetic heterogeneity and alignment of single wall carbon nanotubes, Phys. Rev. B 71, 201401(R) (2005) CrossRefGoogle Scholar
  44. C. T. White, T. N. Todorov: Carbon nanotubes as long ballistic conductors, Nature 393, 240 (1998) CrossRefGoogle Scholar
  45. F. Triozon, S. Roche, A. Rubio, D. Mayou: Electrical transport in carbon nanotubes: Role of disorder and helical symmetries, Phys. Rev. B 69, 121410(R) (2004) CrossRefGoogle Scholar
  46. T. Ando, T. Nakanishi, R. Saito: Berry's phase and absence of back scattering in carbon nanotubes, J. Phys. Soc. Jpn. 67, 2857 (1998) CrossRefGoogle Scholar
  47. S. Roche, J. Jiang, F. Triozon, R. Saito: Quantum dephasing in carbon nanotubes due to electron–phonon coupling, Phys. Rev. Lett. 95, 076803 (2005) CrossRefGoogle Scholar
  48. S. Roche, J. Jiang, F. Triozon, R. Saito: Conductance and coherence lengths in disordered carbon nanotubes: {R}ole of lattice defects and phonon vibrations, Phys. Rev. B 72, 113410 (2005) CrossRefGoogle Scholar
  49. S. Roche, F. Triozon, A. Rubio, D. Mayou: Conduction mechanisms and magneto-transport in multiwalled carbon nanotubes, Phys. Rev. B 64, 121401(R) (2001) CrossRefGoogle Scholar
  50. B. L. Al'tshuler, A. G. Aronov, B. Z. Spivak: The {A}haronov–{B}ohm effect in disordered conductors, JETP Lett. 33, 94 (1981) Google Scholar
  51. S. Roche, R. Saito: Magnetoresistance of carbon nanotubes: From molecular to mesoscopic fingerprints, Phys. Rev. Lett. 87, 246803 (2001) CrossRefGoogle Scholar
  52. L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J. P. Heremans, C. H. Olk, L. Stockman, C. van Haesendonck, Y. Bruynseraede: Quantum transport in a multiwalled carbon nanotube, Phys. Rev. Lett. 76, 479 (1996) CrossRefGoogle Scholar
  53. J. Cao, Q. Wang, M. Rolandi, H. Dai: Aharonov–{B}ohm interference and beating in single-walled carbon-nanotube interferometers, Phys. Rev. Lett. 93, 216803 (2004) CrossRefGoogle Scholar
  54. C. Strunk, B. Stojetz, S. Roche: Quantum interferences in multiwall carbon nanotubes, Semicond. Sci. Technol. 21, S38 (2006) CrossRefGoogle Scholar
  55. F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu, M. F. Lin: Magnetoelectronic and optical properties of carbon nanotubes, Phys. Rev. B 67, 045405 (2003) CrossRefGoogle Scholar
  56. I. B. Mortimer, L.-J. Li, R. A. Taylor, G. L. Rikken, O. Portugall, R. J. Nicholas: Magneto-optical studies of single-wall carbon nanotubes, Phys. Rev. B 76, 085404 (2007) CrossRefGoogle Scholar
  57. I. B. Mortimer, R. J. Nicholas: Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes, Phys. Rev. Lett. 98, 027404 (2007) CrossRefGoogle Scholar
  58. C. D. Spataru, S. Ismail-Beigi, R. B. Capaz, S. G. Louie: Quasiparticle and excitonic effects in the optical response of nanotubes and nanoribbons, in A. Jorio, G. Dresselhaus, M. Dresselhaus (Eds.): Topics in Applied Physics, vol. 111 (Springer, Heidelberg 2008) p. 183 Google Scholar
  59. T. Ando: Excitons in carbon nanotubes, J. Phys. Soc. Jpn. 66, 1066 (1997) CrossRefGoogle Scholar
  60. C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, S. G. Louie: Excitonic effects and optical spectra of single-walled carbon nanotubes, Phys. Rev. Lett. 92, 077402 (2004) CrossRefGoogle Scholar
  61. E. Chang, G. Bussi, A. Ruini, E. Molinari: Excitons in carbon nanotubes: An \textit{ab-initio} symmetry-based approach, Phys. Rev. Lett. 92, 196401 (2004) CrossRefGoogle Scholar
  62. V. Perebeinos, J. Tersoff, P. Avouris: Scaling of excitons in carbon nanotubes, Phys. Rev. Lett. 92, 257402 (2004) CrossRefGoogle Scholar
  63. H. Zhao, S. Mazumdar: Electron–electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes, Phys. Rev. Lett. 93, 157402 (2004) CrossRefGoogle Scholar
  64. T. Ando: Excitons in carbon nanotubes revisited: Dependence on diameter, {A}haronov–{B}ohm flux, and strain, J. Phys. Soc. Jpn. 73, 3351 (2004) CrossRefGoogle Scholar
  65. E. Chang, G. Bussi, A. Ruini, E. Molinari: First-principles approach for the calculation of optical properties of one-dimensional systems with helical symmetry: The case of carbon nanotubes, Phys. Rev. B 72, 195423 (2005) CrossRefGoogle Scholar
  66. V. Perebeinos, J. Tersoff, P. Avouris: Radiative lifetime of excitons in carbon nanotubes, Nano Lett. 5, 2495 (2005) CrossRefGoogle Scholar
  67. C. D. Spataru, S. Ismail-Beigi, R. B. Capaz, S. G. Louie: Theory and \textit{ab-initio} calculation of radiative lifetime of excitons in semiconducting carbon nanotubes, Phys. Rev. Lett. 95, 247402 (2005) CrossRefGoogle Scholar
  68. T. Ando: Effects of valley mixing and exchange on excitons in carbon nanotubes with {A}haronov–{B}ohm flux, J. Phys. Soc. Jpn. 75 (2006) Google Scholar
  69. E. Chang, D. Prezzi, A. Ruini, E. Molinari: Dark excitons in carbon nanotubes, URL: cond-matt/0603085 arXiv Google Scholar
  70. F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz: The optical resonances in carbon nanotubes arise from excitons, Science 308, 838 (2005) CrossRefGoogle Scholar
  71. J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini, E. Molinari, M. S. Strano, C. Thomsen, C. Lienau: Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Phys. Rev. B 72, 241402 (2005) CrossRefGoogle Scholar
  72. R. Loudon: One-dimensional hydrogen atom, Am. J. Phys. 27, 649 (1959) CrossRefGoogle Scholar
  73. R. J. Elliot, R. Loudon: Theory of fine structure on the absorption edge in semiconductors, J. Phys. Chem. Solids 8, 382 (1959) CrossRefGoogle Scholar
  74. R. J. Elliot, R. Loudon: Theory of the absorption edge in semiconductors in a high magnetic field, J. Phys. Chem. Solids 15, 196 (1960) CrossRefGoogle Scholar
  75. T. Ogawa, T. Takagahara: Interband absorption spectra and {S}ommerfeld factors of a one-dimensional electron–hole system, Phys. Rev. B 43, 14325 (1991) CrossRefGoogle Scholar
  76. T. Ogawa, T. Takagahara: Optical absorption and {S}ommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects, Phys. Rev. B 44, 8138 (1991) CrossRefGoogle Scholar
  77. S. Glutsch, F. Bechstedt: Effects of the {C}oulomb interaction on the optical spectra of quantum wires, Phys. Rev. B 47, 4315 (1993) CrossRefGoogle Scholar
  78. D. S. Citrin: Long intrinsic radiative lifetimes of excitons in quantum wires, Phys. Rev. Lett. 69, 3393 (1992) CrossRefGoogle Scholar
  79. J. Shaver, J. Kono, O. Portugall, V. Krstic, G. L. J. A. Rikken, Y. Miyauchi, S. Maruyama, V. Perebeinos: Magnetic brightening of carbon nanotube photoluminescence through symmetry breaking, Nano Lett. 7, 1851 (2007) CrossRefGoogle Scholar
  80. J. Shaver, J. Kono, O. Portugall, V. Krstic, G. L. J. A. Rikken, Y. Miyauchi, S. Maruyama, V. Perebeinos: Magneto-optical spectroscopy of excitons in carbon nanotubes, Phys. Stat. Sol. (b) 243, 3192 (2006) CrossRefGoogle Scholar
  81. H. Htoon, M. J. O'Connell, P. J. Cox, S. K. Doorn, V. I. Klimov: Low temperature emission spectra of individual single-walled carbon nanotubes: Multiplicity of subspecies within single-species nanotube ensembles, Phys. Rev. Lett. 93, 027401 (2004) CrossRefGoogle Scholar
  82. H. Ajiki, T. Ando: Lattice distortion with spatial variation of carbon nanotubes in magnetic fields, J. Phys. Soc. Jpn. 65, 2976 (1996) CrossRefGoogle Scholar
  83. H. Ajiki: Magnetic-field effects on the optical spectra of a carbon nanotube, Phys. Rev. B 65, 233409 (2002) CrossRefGoogle Scholar
  84. A. Kanda, S. Uryu, K. Tsukagoshi, Y. Ootuka, Y. Aoyagi: Magnetic field dependence of {C}oulomb oscillations in metal/multi-wall carbon nanotube/metal structures, Physica B 323, 246 (2002) CrossRefGoogle Scholar
  85. C. G\'omez-Navarro, P. J. D. Pablo, J. G\'omez-Herrero, B. Biel, F.-J. Garcia-Vidal, A. Rubio, F. Flores: Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the anderson localization regime, Nature Mater. 4, 534 (2005) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Junichiro Kono
    • 1
  • Robin J. Nicholas
    • 2
  • Stephan Roche
    • 3
  1. 1.Department of Electrical & Computer EngineeringRice UniversityHoustonUSA
  2. 2.Physics Department, OxfordUniversity, Clarendon LaboratoryOxfordUK
  3. 3.CEA/DSM/DRFMC/SPSMS/GTGrenobleFrance

Personalised recommendations