Unidimensional Multiscale Local Features for Object Detection Under Rotation and Mild Occlusions

  • Michael Villamizar
  • Alberto Sanfeliu
  • Juan Andrade Cetto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4478)


In this article, scale and orientation invariant object detection is performed by matching intensity level histograms. Unlike other global measurement methods, the present one uses a local feature description that allows small changes in the histogram signature, giving robustness to partial occlusions. Local features over the object histogram are extracted during a Boosting learning phase, selecting the most discriminant features within a training histogram image set. The Integral Histogram has been used to compute local histograms in constant time.


Local Feature Object Detection Patch Image Color Histogram Integral Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Swain, M., Ballard, D.: Color indexing. Int. J. Comput. Vision 7(1), 11–32 (1991)CrossRefGoogle Scholar
  2. 2.
    Moreno, F., Andrade-Cetto, J., Sanfeliu, A.: Fusion of color and shape for object tracking under varying illumination. In: Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 580–588. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Schiele, B., Crowley, J.L.: Object recognition using multidimensional receptive field histograms. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 610–619. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. 15th IEEE Conf. Comput. Vision Pattern Recog., Kauai, December 2001, pp. 511–518 (2001)Google Scholar
  5. 5.
    Villamizar, M., Sanfeliu, A., Andrade-Cetto, J.: Computation of rotation local invariant features using the integral image for real time object detection. In: Proc. 18th IAPR Int. Conf. Pattern Recog, Hong Kong, August 2006, vol. 4, pp. 81–85 (2006)Google Scholar
  6. 6.
    Porikli, F.: Integral histogram: a fast way to extract histograms in cartesian spaces. In: Proc. 19th IEEE Conf. Comput. Vision Pattern Recog., San Diego, June 2005, vol. 1, pp. 829–836 (2005)Google Scholar
  7. 7.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Rätsch, G., Schölkopf, B., Mika, S., Müller, K.-R.: SVM and Boosting: One class. Technical report, GMD First (November 2000)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Michael Villamizar
    • 1
  • Alberto Sanfeliu
    • 1
  • Juan Andrade Cetto
    • 1
  1. 1.Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Llorens Artigas 4-6, 08028 BarcelonaSpain

Personalised recommendations