Advertisement

Synchronization of Video Sequences from Free-Moving Cameras

  • Joan Serrat
  • Ferran Diego
  • Felipe Lumbreras
  • José Manuel Álvarez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4478)

Abstract

We present a new method for the synchronization of a pair of video sequences and the spatial registration of all the temporally corresponding frames. This is a mandatory step to perform a pixel wise comparison of a pair of videos. Several proposals for video matching can be found in the literature, with a variety of applications like object detection, visual sensor fusion, high dynamic range and action recognition. The main contribution of our method is that it is free from three common restrictions assumed in previous works. First, it does not impose any condition on the relative position of the two cameras, since they can move freely. Second, it does not assume a parametric temporal mapping relating the time stamps of the two videos, like a constant or linear time shift. Third, it does not rely on the complete trajectories of image features (points or lines) along time, something difficult to obtain automatically in general. We present our results in the context of the comparison of videos captured from a camera mounted on moving vehicles.

Keywords

Video Sequence Action Recognition High Dynamic Range Fundamental Matrix Ideal Tracker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stein, G.P.: Tracking from multiple view points: self calibration of space and time. In: Proc. DARPA Image Understanding Workshop, pp. 521–527 (1998)Google Scholar
  2. 2.
    Carceroni, R., Pádua, F., Santos, G., Kutulakos, K.: Linear sequence–to–sequence alignment. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Washington DC, pp. 746–753 (2004)Google Scholar
  3. 3.
    Tresadern, P., Reid, I.: Synchronizing image sequences of non–rigid objects. In: British Machine Vision Conf., Norwich, UK, pp. 629–638 (2003)Google Scholar
  4. 4.
    Lei, C., Yang, Y.: Trifocal tensor–based multiple video synchronization with subframe optimization. IEEE Trans. Image Processing 15(9), 2473–2480 (2006)CrossRefGoogle Scholar
  5. 5.
    Wolf, L., Zomet, A.: Wide baseline matching between unsynchronized video sequences. Int. Journal of Computer Vision 68(1), 43–52 (2006)CrossRefGoogle Scholar
  6. 6.
    Tuytelaars, T., VanGool, L.: Synchronizing video sequences. In: Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Washington DC, vol. 1, pp. 762–768 (2004)Google Scholar
  7. 7.
    Caspi, Y., Irani, M.: Spatio–temporal alignment of sequences. IEEE Trans. Pattern Analisys and Machine Intelligence 24(11), 1409–1424 (2002)CrossRefGoogle Scholar
  8. 8.
    Ukrainitz, Y., Irani, M.: Aligning sequences and actions by maximizing space-time correlations. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 538–550. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Sand, P., Teller, S.: Video matching. ACM Transactions on Graphics (Proc. SIGGRAPH) 22(3), 592–599 (2004)Google Scholar
  10. 10.
    Rao, C., Gritai, A., Sha, M., et al.: View–invariant alignment and matching of video sequences. In: Proc. IEEE Int. Conf. Computer Vision, Nice, France, pp. 939–945 (2003)Google Scholar
  11. 11.
    Irani, M.: Multi–frame correspondence estimation using subspace constraints. Int. Journal of Computer Vision 48(3), 173–194 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Szeliski, R.: Image alignment and stitching: A tutorial. Technical Report MSR-TR-2004-92, Microsoft Research (2006)Google Scholar
  13. 13.
    Zelnik-Manor, L., Irani, M.: Multi–frame estimation of planar motion. IEEE Trans. Pattern Analisys and Machine Intelligence 22(10), 1105–1116 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Joan Serrat
    • 1
  • Ferran Diego
    • 1
  • Felipe Lumbreras
    • 1
  • José Manuel Álvarez
    • 1
  1. 1.Computer Vision Center & Computer Science Dept., Edifici O, Universitat Autónoma de Barcelona, 08193 CerdanyolaSpain

Personalised recommendations